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Abstract

Wealthy households disproportionately invest in equity, causing equity returns to generate
large and persistent fluctuations in top wealth inequality. Motivated by this fact, I build an
equilibrium model of the wealth distribution where agents have heterogeneous exposures to
aggregate risk. While the wealth distribution is stochastic in the model, I show that it exhibits
a Pareto tail, with a (time-invariant) index that depends on the average logarithmic return
of top households. The model features a two-way feedback between asset prices and wealth
inequality, which amplifies the response of top wealth inequality to aggregate income shocks in
the short-run while dampening it in the medium-run. Aggregate shocks generate particularly
large fluctuations in the right tail of the wealth distribution, as higher percentiles are more
exposed to aggregate risk and take a longer time to mean revert.
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1 Introduction

Recent empirical studies have documented important fluctuations in top wealth inequality over
time, both at the business cycle and at lower frequencies.1 What causes these fluctuations in wealth
inequality? And what is the effect of these fluctuations in inequality on the aggregate economy?

In this paper, I study empirically and theoretically the interplay between asset prices and
wealth inequality. I document that wealthy households disproportionately invest in equity, caus-
ing equity returns to generate large and persistent fluctuations in top wealth inequality. I then
build a model with heterogeneous agents and aggregate income shocks that can match these im-
pulse response functions. The model features a two-way feedback between asset prices and wealth
inequality, which amplifies the response of top wealth inequality to aggregate income shocks in
the short-run while dampening it in the medium-run.

The paper proceeds in three steps. I first use recently available data on top wealth inequality
to document that wealthy households are twice as exposed to equity returns relative to the rest of
the population. In response to a realized stock return of 10%, the average wealth in the economy
increases by 4.3% while the average wealth in the top 0.01% increases by 7.8%. As a result, equity
returns generate fluctuations in top wealth shares: in response to a realized stock return of 10%, the
share of wealth owned by the top 0.01% increases by 3.5% (= 7.8%� 4.3%). Using local projection
methods, I show that these effects appear to be very persistent over time.

Motivated by this empirical evidence, I then build an endowment economy model in which
agents have heterogeneous exposures to aggregate income shocks. In the model, a subset of
the population (“entrepreneurs”) must hold concentrated positions in their firms, while the rest
(“households”) can freely trade equity. As entrepreneurs are more exposed to aggregate risk, ag-
gregate shocks generate fluctuations in the distribution of wealth, as in the data.

I then characterize analytically the shape and the dynamics of the wealth distribution in the
model. While the wealth distribution is stochastic in the model (as in the data), I show that it still
exhibits a Pareto tail with a time-invariant tail index. The intuition is that wealthy individuals tend
to have similar portfolios, and so, aggregate shocks do not affect the tail index of the wealth dis-
tribution (a measure of relative inequality within the rich). Moreover, I obtain a simple analytical
formula for this tail index in terms of the average logarithmic return of top households relative to
the growth of the economy.

In the last part of the paper, I explore this mechanism quantitatively. I calibrate the model using
moments related to top wealth inequality and asset prices. In particular, I use the elasticity of the
average wealth in the top 0.01% to discipline the aggregate risk exposure of entrepreneurs and
the tail index of the wealth distribution to discipline their saving rate. I show that the calibrated
model matches well the level and the dynamics of top wealth shares in response to excess stock
returns.

1See, for instance, Wolff (2002), Kopczuk and Saez (2004), and Saez and Zucman (2016).
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The model generates a feedback loop between asset prices and top wealth inequality. After
a positive aggregate income shock, wealthier investors gain more than the rest, i.e. wealth in-
equality increases. As wealth is redistributed towards wealthy agents, the aggregate demand for
assets increases, which, in turn, increases asset valuations. As a result, the model can generate
an “excess” volatility of stock market returns in response to aggregate income shocks. To better
understand the mechanism, I derive an exact decomposition for the volatility of asset valuations
as a sum of changes in future risk-free rates and changes in future expected excess returns (à la
Campbell-Shiller). Relative to the original decomposition by Campbell and Shiller (1988), this
decomposition is exact, can be computed analytically, and varies with the aggregate state of the
economy. After applying this new methodology, I show that the volatility of asset returns in the
model is mostly driven by changes in future expected excess returns in good times and by changes
in future risk-free rates in bad times.

I then use the calibrated model to trace out the effect of aggregate shocks on top wealth in-
equality over the full horizon. This analysis complements my empirical results, which were solely
focused on their short-term responses (as standard errors from local projections become exces-
sively large after ten years). A key finding is that top wealth shares take a very long time to mean
revert: more precisely, it takes approximately 40 years for the effect of an aggregate shock on the
wealth share of the top 0.01% to be divided by three. Intuitively, this reflects the fact that the effect
of aggregate shocks only fully dissipates when new generations reach top percentiles, a process
which inherently takes time.

Due to this high persistence, the model generates sizable fluctuations in top wealth inequality
over time. Quantitatively, I find that the calibrated model can account for about 40% of the actual
standard deviation of top wealth shares observed in the data. In other words, the core mecha-
nism of the model (the disproportional exposure of wealthy households to aggregate shocks) can
explain a substantial portion, but not all, of the actual fluctuations in top wealth shares. More
precisely, while the model matches well the business cycle dynamics of top wealth inequality,
it cannot fully capture its low-frequency fluctuations (in particular its overall U-shape over the
20th century). This leaves room for further exploration of contributing factors discussed in the
literature, such as changes in saving rates, taxes, or idiosyncratic shocks.2

Literature review. This paper is motivated by a growing literature documenting the dynamics
of top wealth shares in the U.S. (Kopczuk and Saez, 2004, Saez and Zucman, 2016, Smith et al.,
2023). In response to these findings, a number of macro papers have studied the role of changes
in taxes (Kaymak and Poschke, 2016; Hubmer et al., 2021), changes in labor income (Kaymak et
al., 2018), or changes in idiosyncratic shocks (Atkeson and Irie, 2022; Gomez, 2023) on top wealth
inequality. Relative to these papers, I focus on examining the effect of excess stock market returns

2A non-exhaustive list of papers focused on the low-frequency fluctuations of top wealth inequality for the U.S.
includes Kaymak and Poschke (2016), Benhabib et al. (2019), Mian et al. (2020), Hubmer et al. (2021), and Atkeson and
Irie (2022).
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(in the model, shocks in aggregate income) on top wealth inequality, both in the short-run and in
the longer-run.

On the empirical side, this paper contributes to a large literature examining the heterogeneity
in equity holdings across the distribution of households (Guiso et al., 1996; Carroll, 2000; Camp-
bell, 2006; Wachter and Yogo, 2010; Roussanov, 2010; Bach et al., 2020; Kacperczyk et al., 2018). In
particular, Parker and Vissing-Jørgensen (2010) document that the income of top percentiles be-
came more exposed to aggregate shocks at the turn of the 20th century. Mankiw and Zeldes (1991)
and Malloy et al. (2009) document that the consumption of rich stockholders is more exposed to
stock market returns. In contemporaneous work, Kuhn et al. (2020) measures the elasticity of the
top 10% wealth share to stock market returns using data from the Survey of Consumer Finances
(SCF). Relative to this paper, I focus on the right tail of the wealth distribution (top 1% to top 400),
which leads me to find estimates that are an order of magnitude larger.3 I also focus on longer
horizons (up to eight years), which reveals that the effect of stock market returns is very persistent
over time, a fact that will play a central role in the calibrated model.

On the theoretical side, my paper contributes to random growth models of inequality. While
standard models focus on deterministic economies, where the wealth distribution is time-invariant,
I study a Markovian economy, where the wealth distribution is stochastic. Despite the presence of
aggregate shocks, I obtain a simple characterization for the tail index of the wealth distribution,
which depends on the time-averaged logarithmic wealth growth of top households. This result con-
nects my paper to Kelly (1956), Blume et al. (1992), or Borovička (2020), who stress the importance
of this quantity for long-run survival in infinite-horizon economies. Finally, my finding that ag-
gregate shocks generate long-lived changes in top wealth shares complements recent work by
Luttmer (2012) and Gabaix et al. (2016), that stress the slow transition dynamics of wealth distri-
butions between two steady states.

This paper also contributes to the large asset pricing literature with heterogeneous agents (Du-
mas, 1989; Guvenen 2009; Chan and Kogan, 2002; Basak and Cuoco, 1998; Gomes and Michaelides,
2008; Brunnermeier and Sannikov, 2014; He and Krishnamurthy, 2012; Gârleanu and Panageas,
2015). An open question in the literature is: is there enough heterogeneity across households to
account for the excess volatility of asset prices in equilibrium?4 My paper advances on this ques-
tion by using two key moments about the wealth distribution, the elasticity of top wealth shares
to stock market returns and the tail index of the wealth distribution, to discipline the degree of
heterogeneity across households. Another contribution of this paper is to develop an exact ver-

3More precisely, while Kuhn et al. (2020) show that a 10% equity return increases the wealth share of the top 10%
by 0.25%, I show that it increases the wealth share of the top 0.01% by 3.5%. My estimates are also larger than the
ones obtained by Bach et al. (2020) for Sweden, who estimate that a 1% (domestic) equity return increases the wealth of
households in the top 0.01% by 0.53% — in comparison, I find that a 1% equity return increases the wealth of top U.S.
households by 0.98%.

4Reflecting this sentiment, Cochrane (2017) writes that “[the heterogeneous agents] model faces challenges and
opportunities in the micro data just as the idiosyncratic risk model does. Do the ‘high-beta rich’ really lose so much
in bad times? Can the model quantitatively account for return predictability? But that investigation has not really
started.”
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sion of Campbell and Shiller (1988)’s decomposition of innovations in the price-dividend ratio in
continuous-time economies. This decomposition, which can be computed analytically, is particu-
larly useful to analyze the excess volatility of returns in non-linear asset pricing models, such as
models with heterogeneous-agents.

More generally, this paper contributes to the growing literature on the effect of inequality on
asset prices. The work of Gollier (2001) is an early example that examines theoretically the impor-
tance of the wealth distribution for asset prices. Barczyk and Kredler (2016) and Favilukis (2013)
also study the role of changes in wage inequality on asset prices. More recently, Auclert and Rogn-
lie (2017) and Straub (2019) study the effect of a secular rise in income inequality on interest rates.
Toda and Walsh (2020) document that fluctuations in income inequality negatively predict future
excess stock returns. Eisfeldt et al. (2023) discuss the joint relation between the wealth distribution
and asset prices across markets with different expertise.

Roadmap. The rest of the paper is organized as follows. In Section 2, I document the dynamics
of top wealth shares following equity returns. In Section 3, I build a perpetual-youth endowment
economy model in which agents have heterogeneous exposures to aggregate shocks and I char-
acterize the shape of the wealth distribution implied by the model. In Section 4, I calibrate the
model using U.S. data and I study the dynamics of asset prices and wealth inequality in response
to aggregate shocks.

2 Empirical evidence

In this section, I explore how stock market returns influence the dynamics of top wealth shares.
Section 2.1 presents the data, Section 2.2 discusses the findings, and Section 2.3 examines the
robustness of my results.

2.1 Data

I am interested in measuring the changes in the wealth distribution following stock market re-
turns. Therefore, I need yearly estimates of the wealth distribution that cover several business
cycles. For the baseline analysis, I use the latest version of the series of top wealth shares con-
structed from income tax returns by Saez and Zucman (2016) (2022 vintage), which spans from
1913 to 2020.5 The dataset also includes a series for the average wealth in the economy. In ro-
bustness checks, I also use two alternative data series on top wealth shares found in the literature
for smaller time-samples: Smith et al. (2023), which spans from 1966 to 2016, and Kopczuk and
Saez (2004), which spans from 1916 to 2000. It is important to note that all these series measure

5This series improves on the initial published series by updating the time sample and by incorporating certain
methodological innovations developed, among others, by Smith et al. (2023).
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a time-averaged distribution of wealth in a given year, rather than pinpointing wealth at a specific
moment within the year.

I supplement these series of top wealth shares with the list of the wealthiest 400 Americans
constructed by Forbes every September since 1982, which offers an unparalleled view on the right
tail of the wealth distribution. The list is created by a dedicated staff of the magazine, based on
a mix of public and private information.6 To be consistent with the other data series, I focus on
a given percentile group rather than on a given number of households (the two concepts differ
in the presence of population growth). More precisely, I focus on the percentile that includes the
entirety of households in the Forbes 400 list in 2017 (264 households in 1982) — it corresponds to
approximately 3% of agents in the top 0.01%. I will refer to this top percentile as the top 400 in the
rest of the paper

For asset pricing data, I use the series of stock market returns and risk-free rates from Welch
and Goyal (2008) (2022 vintage). Stock returns correspond to the S&P 500 index returns from
1926 and returns from Robert Shiller’s website beforehand. The risk-free rate corresponds to the
Treasury-bill rate.7

2.2 Empirical results

Response of the average wealth in top percentiles. I estimate the effect of realized stock mar-
ket returns on the average wealth in top percentiles using local projection methods (Jordà, 2005).
Formally, I regress the excess growth of the average wealth in a given top percentile p at different
horizons on excess stock market returns:

log
✓Wp,t+h

Wp,t�1

◆
� (h + 1) log R f ,t = ap,h + bp,h(log RM,t � log R f ,t) + ep,t+h, (1)

where h � 0 denotes the horizon, Wp,t denotes the average wealth of households in the top per-
centile p in year t, log RM,t denotes the log stock market return, and log R f ,t denotes the log risk-
free rate. Note that both the growth of the average wealth in a top percentile (the dependent
variable) and the stock market return (the independent variable) are adjusted by the risk-free rate,
as a way to capture expected changes in these variables (e.g. expected inflation). I will discuss al-
ternative specifications in Section 2.3. Following Herbst and Johannsen (2021), I estimate standard

6Forbes reports that “we pored over hundreds of Securities Exchange Commission documents, court records, probate
records, federal financial disclosures and Web and print stories. We took into account all assets: stakes in public
and private companies, real estate, art, yachts, planes, ranches, vineyards, jewelry, car collections and more. We also
factored in debt. Of course, we don’t pretend to know what is listed on each billionaire’s private balance sheet, although
some candidates do provide paperwork to that effect.”

7For the series constructed from tax return data, I construct yearly stock returns by cumulating monthly stock re-
turns from January to December. For the series constructed from Forbes data, I construct yearly returns by cumulating
monthly stock returns from October to September, consistently with the fact that the ranking tries to report the distri-
bution of wealth in September of each year.
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errors using heteroskedasticity-consistent (Huber-White) estimators.8

Figure 1 plots the estimates of bp,h for 0  h  8 and p 2 {100%, 1%, 0.1%, 0.01%, Top 400}
. There are three important observations. First, the estimates increase monotonically across top
percentiles. Second, within each top percentile, the elasticities initially increase with the horizon.
One reason is that Wp,t represents the time-averaged wealth in a given percentile during the year; as
a result, the effect of the cumulative stock market return in year t is only fully incorporated by year
t + 1 (i.e., at h = 1 rather than at h = 0). Another potential reason is that a large share of wealth
in top percentiles is held in privately held assets, whose valuations tend to react sluggishly to
changes in the stock market.9 Third, the effect of stock market returns tends to be very persistent,
with little mean reversion over time (note, however, that these estimates become less precise as
the horizon grows). As we will see in the model below, this reflects the fact that top percentiles
mean-revert very slowly after shocks.

Table 1 reports the estimates of bp,h for h = 3, which corresponds to the horizon at which the
impulse responses tend to peak for top percentiles. The estimates increase with top percentiles,
from b = 0.43 for the average household to b = 0.78 for households in the top 0.01% and b = 0.94
for households in the top 400. In short, these estimates suggest that the wealth of households
in the right tail of the wealth distribution tends to be twice as exposed to stock market returns
relative to the average household in the economy.

Response of top percentile wealth shares. The previous results show that stock market returns
have higher effects on the average wealth in top percentiles than on the average wealth in the econ-
omy. Mechanically, this means that stock market returns tend to increase top percentile wealth
shares. To see this formally, I estimate regressions of the form

log
✓Sp,t+h

Sp,t�1

◆
= ap,h + bp,h(log RM,t � log R f ,t) + ep,t+h, (1’)

where Sp,t ⌘ pWp,t/W100%,t denotes the share of aggregate wealth owned by individuals in the
top percentile p (i.e., the top percentile wealth share). Note that (1’) can be obtained by taking
the difference of (1) between p and p = 100%: intuitively, the exposure of the share of wealth
owned by a top percentile is the difference between the exposure of the average wealth in the top
percentile and the average wealth in the population; that is, bp,h = bp,h � b100%,h. Still, running
this specification separately is useful to test whether this difference is statistically significant.

Panel B of Table 1 reports the estimates for bp,h at the four-year horizon. Consistently with the

8While Jordà (2005) recommends using Newey-West standard errors, Herbst and Johannsen (2021) stress that they
can be downward biased in finite sample and recommend using heteroskedasticity-consistent standard errors. In line
with their results, I find that robust standard errors give me wider standard errors than Newey-West, so I report the
former ones to be conservative.

9This is particularly true for estimates from Forbes, who often use the valuation implied by the last financing round.
Relatedly, I find a similar pattern for measures of wealth constructed from estate tax returns (Kopczuk and Saez, 2004),
where the valuation of non-tradable assets is done by an external appraiser.
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Figure 1: Response of the average wealth in top percentiles to excess stock returns
Notes: The figure reports the estimates for bp,h estimated via the regression (1) for 0  h  8 as well as their 5%–95% confidence inter-

vals using heteroskedasticity consistent standard errors. Each figure corresponds to a different top percentile. Figure 1a corresponds
to the average wealth of U.S households (p = 100%). Figures 1b-1d correspond to the top 1%, 0.1%, 0.01% using data from Saez and
Zucman (2016) (2022 vintage). Figure 1e corresponds to Forbes 400.
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Table 1: Wealth exposure to stock returns across top percentiles

Top 100% Top 1% Top 0.1% Top 0.01% Top 400

(1) (2) (3) (4) (5)

Panel A: Average wealth
Excess returns 0.43⇤⇤⇤ 0.54⇤⇤⇤ 0.62⇤⇤⇤ 0.78⇤⇤⇤ 0.98⇤⇤⇤

(0.11) (0.12) (0.14) (0.18) (0.20)
Adjusted R2 0.16 0.20 0.19 0.18 0.31
Time sample 1914-2016 1914-2016 1914-2016 1914-2016 1984-2014
N 103 103 103 103 31

Panel B: Wealth share
Excess returns 0.11⇤⇤ 0.19⇤⇤ 0.35⇤⇤ 0.59⇤⇤⇤

(0.05) (0.09) (0.14) (0.20)
Adjusted R2 0.05 0.04 0.06 0.22
Time sample 1914-2016 1914-2016 1914-2016 1984-2014
N 103 103 103 31

Notes: Panel A reports the results of regressing the four-year growth of the average wealth in a given percentile group on excess
stock returns; that is, equation (1) with h = 3. Panel B reports the same regression using the four-year growth of the top wealth
share as the left-hand-side variable; that is, equation (1’) with h = 3.. Each column corresponds to a different top percentile. Column
(1) corresponds to the average U.S household (p = 100%). Columns (2)–(4) correspond to increasing top percentiles in the wealth
distribution using data from Saez and Zucman (2016) (2022 vintage). Column (5) corresponds to Forbes 400. Estimation is done
via OLS. Standard errors are in parentheses and are estimated using heteroskedasticity consistent standard errors. ⇤,⇤⇤ ,⇤⇤⇤ indicate
significance at the 10%, 5%, 1% levels, respectively.

discussion above, the estimate 0.35 for the top 0.01% corresponds exactly to the difference between
the wealth exposure of households in the top 0.01% and the average household in the economy;
that is, 0.35 = 0.78 � 0.43. Note that the difference is significant at the 1% level. Finally, similarly
to Figure 1, Appendix Figure D6 reports the impulse response of top wealth shares obtained by
plotting the estimated bp,h from (1’) for 0  h  8 for different top percentiles.

2.3 Robustness checks

I now explore the robustness of my findings across three key aspects: empirical specifications,
alternative data sources, and shifts in the composition of households in top percentiles. I briefly
summarize the results below, relegating the reader to Appendix B for more details.

Alternative specifications. For my baseline results, I focused on estimating local projections us-
ing simple univariate regressions (i.e., using excess stock returns as the only regressors). One
reason is that these univariate regressions allow for a straightforward mapping between the re-
sponse of the average wealth in a top percentile (1) and the response of the top percentile wealth
share (1’).

In the spirit of local projections, however, I now augment the specifications with pre-determined
controls; that is, variables known at time t � 1 that capture the information available at that time.
These variables help in isolating the effect of unexpected stock market returns on the wealth distri-
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bution. Consistently with the usual intuition for omitted variable biases, I focus on variables that
either correlate with the treatment (excess returns) or the outcome (growth of average wealth in
top percentile / top percentile wealth share). In Appendix B.1, I show that augmenting the base-
line specification with these controls do not significantly change the response of top wealth shares
to stock market returns (Table B1). Intuitively, this comes from the fact that fluctuations in excess
stock returns are very hard to predict (i.e. they are only weakly correlated with variables known
at time t � 1).

Another potential concern is that, when the treatment is serially correlated, local projections
measure both the direct effect of a higher-than-average treatment and its indirect effect via higher
future treatments on average. To isolate the direct effect, Alloza et al. (2020) suggest augmenting
local projections with controls for future realized treatments. In Appendix B.1, I show that I ob-
tain similar results when doing so (Table B2). This means that the response of top wealth shares
obtained in my baseline specification is driven by the direct effect of higher stock returns at h = 0,
rather than their indirect effects through higher (or lower) average returns at h � 1. This reflects
the fact that the serial correlation in excess stock returns is close to zero empirically.10

Alternative data sources. There is substantial uncertainty about the historical dynamics of top
wealth shares. In Appendix B.2, I show that my results remain similar when using the two main
alternative data series for top wealth shares available from the literature: the series from Kopczuk
and Saez (2004), constructed from estate tax returns, and the series from Smith et al. (2023). The
conclusion is that, while these series disagree on the low-frequency fluctuations in top wealth
shares, they tend to imply similar responses of top wealth shares to stock market returns.

As a further robustness check, I also show in Appendix B.2 that my estimates for the elasticity
of top percentile wealth to stock market returns is consistent with the share of wealth invested in
equity in different part of the wealth distribution, as reported in the Survey of Consumer Finances.

Accounting for composition effects. Top percentiles do not include the same individuals over
time. As a result, changes in the average wealth in a top percentile can be driven by the wealth
changes of individuals initially in the top percentile (an “intensive” term) or by changes in the
composition of individuals in the top percentile (an “extensive” term). Do these composition
effects matter for my estimates?

To answer this question, I decompose the growth of the average wealth in the top 400 into these
two terms using the same methodology as Gomez (2023). As shown in Appendix B.3 (Figure B3),
I find the response of the average wealth in the top 400 to stock market returns is almost entirely
driven by the intensive term rather than by the extensive term. Said differently, high stock market
returns increase the average wealth in the top 400 because they increase the average wealth of

10More generally, note that I will rely on these empirical results to discipline a model (see Section 4). Hence, some
degree of mispecification in these regressions is acceptable provided that I consistently apply the same specification in
both the model and the data.
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agents who were initially in the top 400, not because they increase the arrival of new fortunes in
the top 400. This is consistent with the model discussed below, which will generate these impulse
responses through a higher equity exposure of agents in top percentiles.

3 A parsimonious model of heterogeneous risk exposures

Motivated by the reduced-form evidence presented in the previous section, I now build an asset
pricing model in which certain agents (“entrepreneurs”) are required to hold a large share of their
wealth in equity. Because the relative proportion of entrepreneurs increases in the right tail of the
wealth distribution, higher equity returns increase top wealth shares, as in the data. Section 3.1
presents the model, Section 3.2 solves for the Markovian equilibrium, Section 3.3 characterizes the
wealth distribution implied by the model, while Section 3.4 discusses potential extensions.

3.1 Setup

The model is a continuous time, pure-exchange economy with two types of agents: “households,”
who can freely trade firms, and “entrepreneurs,” who must remain disproportionately exposed to
the firms they are born with.

Demography. Demographics follows the perpetual youth model of Blanchard (1985): agents face
a constant hazard rate of death d and population size grows at rate h. This implies that during a
short period of time dt, a proportion d dt of the population dies while a proportion (d + h)dt is
born. In the model (as in the data), these demographic forces play an essential role in making the
wealth distribution stationary.

A proportion p of agents are born as “entrepreneurs” while the rest are born as “households”.
I denote IHt the set of households, IEt the set of entrepreneurs, and It ⌘ IHt [ IEt the set of all
agents in the economy at time t.

Endowment. Aggregate income per capita Yt follows a geometric random walk; that is,

dYt

Yt
= g dt + s dZt, (2)

where (Zt)t2R is a standard Brownian motion that represents aggregate shocks, g represents the
growth rate of the economy per capita, and s represents the volatility of aggregate income.

Each agent is born with a tree that delivers a stochastic flow of income. Formally, each tree i
produces an income flow Yit = JitYt, where Jit evolves as

dJit
Jit

= �f dt + n dBit,
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where (Bit)t2R is a standard Brownian motion that represents shocks specific to the tree i, f rep-
resents the rate of depreciation of the tree, and n represents its idiosyncratic volatility. For the
income of all trees in existence to sum up to aggregate income, the initial value of Jit for trees at
birth must average to (h + f)/(h + d).11

Finally, I assume that the wealth of agents who die is redistributed to newborn agents; that is,
newborns are endowed with new trees as well as old trees from deceased agents..12 I assume that
the distribution of this initial endowment among newborns is independent of their types and that
it follows a log-normal distribution with variance n2

0 .

Markets. Agents in the economy can trade risk-free claims in zero net supply as well as claims
to trees. Denote rt the risk-free rate and pt the market value of a tree relative to its income.13 We
guess that the process pt evolves according to

dpt

pt
= µpt dt + spt dZt, (3)

where µpt and spt will be determined in equilibrium. The instantaneous return of holding tree i
between t and t + dt is the sum of it income yield and the growth in its market value:14

dRit
Rit

=
1
pt

dt +
d (Yit pt)

Yit pt

=

✓
1
pt

+ g � f + µpt + sspt

◆

| {z }
⌘µRt

dt + (s + spt)
| {z }

⌘sRt

dZt + n dBit, (4)

where the second line uses Ito’s lemma.

Households. Households have Duffie and Epstein (1992) preferences, which correspond to the
continuous-time version of the recursive preferences of Epstein and Zin (1989). More precisely,

11Indeed, in this case, one can integrate the income flow of all trees in existence with respect to their birth dates gives
Z t

s=�•
(h + d)|It|e�h(t�s)

✓
h + f

h + d
e�f(t�s)Yt

◆
ds = |It|Yt.

Here, and in the rest of the paper, |X| denotes the mass of a set X.
12Note that Blanchard (1985) and Gârleanu and Panageas (2015) assume instead that the wealth of deceased agents is

redistributed to all existing agents in proportion to their wealth (for instance, because existing agents participate in an
annuity market). However, this assumption is increases the return of existing fortunes by d every period, which leads
to counterfactual implications on wealth inequality.

13It is identical across trees as they all have the same law of motions for income.
14Here, Rit denotes the cumulative return of owning the tree i up to time t.
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the welfare of a household i with consumption process {Cit} is defined recursively by

Vit = Et

Z •

t
f (Ciu, Viu)du

�
,

with f (C, V) = r
1 � g

1 � 1/y
V

 
C1�1/y

((1 � g)V)
1�1/y

1�g

� 1

!
.

These preferences are characterized by three parameters: the subjective discount rate (SDR) r, the
elasticity of intertemporal substitution (EIS) y, and the coefficient of relative risk aversion (RRA)
g.15

Households can freely sell their initial tree and use the proceeds to invest in a diversified
portfolio of trees. Formally, household i 2 IHt chooses a share of wealth invested in a diversi-
fied portfolio of trees, ait, and a consumption rate cit = Cit/Wit to maximize their welfare. The
Hamilton-Jacobi-Bellman (HJB) equation corresponding to this problem is

0 = max
ait,cit

n
f (citWit, Vit)dt + Et[dVit]

o

with
dWit
Wit

= (rt + ait(µRt � rt)� cit)dt + aitsRt dZt.
(5)

Given homothetic preferences and linear budget constraints, we know that all households will
choose the same share of wealth invested in equity and consumption rate (irrespective of their
wealth), which we denote by aHt and cHt, respectively.

Entrepreneurs. In contrast with households, entrepreneurs are required to hold an exogenous
share of wealth aEt in the tree they are born with:

aEt = min

 
aE,

R
i2It

Wit di
R

i2IEt
Wit di

!
. (6)

The upper bound on the risk exposure aEt ensures that entrepreneurs are not required to own more
trees than there exists in the economy. This constraint will almost never bind in equilibrium, but it
is necessary to solve the model globally. For simplicity, I take this equity constraint as exogenous
and I remain agnostic about its origin. As in Di Tella, 2017, this constraint could be motivated
by a moral hazard or asymmetric information problem. Alternatively, the over-exposure of en-
trepreneurs could represent optimism in their projects (Moskowitz and Vissing-Jørgensen, 2002),
a preference for idiosyncratic volatility (Roussanov, 2010), or a higher risk tolerance (Gârleanu
and Panageas, 2015).16

15As shown in Gârleanu and Panageas (2015), when agents face a constant hazard rate of dying, the SDR r should be
seen as the sum of the impatience rate r̂ and of the hazard rate of death d.

16A previous version of this paper modeled “entrepreneurs” as individuals with a higher risk tolerance, rather than
individuals with a constraint on portfolio holdings — this alternative modelling choices leads to similar quantitative
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For simplicity, I assume that entrepreneurs have Epstein-Zin utility with an EIS of one. This
number corresponds to the estimates for Vissing-Jørgensen (2002) for the elasticity stockholders at
the top of the wealth distribution. This choice also simplifies the calibration of the model because
it implies that the consumption rate of entrepreneurs, denoted cEt, is constant over time: cEt = rE,
where rE denotes their SDR.17,18

With these assumptions, the wealth of an entrepreneur i 2 IEt evolves as

dWit
Wit

= (rt + aEt(µRt � rt)� rE)dt + aEtsRt dZt + aEtn dBit. (7)

Note that this law of motion for wealth is a direct function of the entrepreneurs’ fixed equity share
aEt and of their fixed consumption rate cEt = r. This will make it easier to calibrate the model
based on the observed wealth dynamics of agents at the top of the wealth distribution. Finally,
note that the risk aversion of entrepreneurs does not matter for the equilibrium, as it neither affects
their consumption rate (which is pinned down by r) nor their share of wealth invested in equity
(which is pinned down by aE).

Finally, note that the wealth of entrepreneurs in (7) is exposed to the idiosyncratic risk of the
tree they are born with. This does not affect the aggregate demand for goods and assets in equilib-
rium (as entrepreneurs have a fixed equity share and consumption rate); however, it is important
to generate a realistic wealth distribution.

Equilibrium. An equilibrium for the model is defined as a set of price processes (rt)t2R, (pt)t2R

and decision processes for the households (cHt)t2R, (aHt)t2R such that

1. Given the price processes, the decision processes solve the household problem (5).

2. The market for goods and risky assets clear; that is
Z

i2IEt

rEWit di +
Z

i2IHt

cHtWit di = Yt|It|, (8)
Z

i2IEt

aEtWit di +
Z

i2IHt

aHtWit di = ptYt|It|. (9)

By Walras’s law, the market for risk-free claims clears automatically.

results.
17Note that I allow the EIS of households to differ from one. As discussed in the Section 4.1, an EIS lower than one

for households will make it easier for the model to match the high volatility of returns. It is consistent with micro-
evidence for the average household (Vissing-Jørgensen, 2002; Best et al., 2020).

18 There is no need to specify the risk aversion for entrepreneurs as its value does not affect their optimal policies:
their consumption rate is pinned down by rE while the share of wealth they invest in equity is pinned down by aE.
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3.2 Solving the model

I now outline the main steps in deriving the solution in this section (see Appendix C.1 for a de-
tailed derivation).

Household optimal policy. We guess that the value function of households takes the form

Vit =
(ctWit)1�g

1 � g
, (10)

where the process ct, that captures the investment opportunities the faced by the households,
follows a diffusion process

dct

ct
= µct dt + sct dZt,

where µct and sct will be determined in equilibrium. Plugging (10) into the household’s HJB (5)
and applying Ito’s lemma gives

0 = max
cHt,aHt

(
r

1 � 1/y

 ✓
cit
ct

◆1�1/y

� 1

!

+rt + ait(µRt � rt)� cHt + µct �
g

2

✓
a2

Hts
2
Rt + s2

ct � 2
1 � g

g
aHtsRtsct

◆�
.

(11)

The first-order conditions of this problem give

cHt = ryc
1�y
t , (12)

aHt =
1
g

µRt � rt

s2
Rt

+
1 � g

g

sct

sRt
. (13)

Markov equilibrium. Households and entrepreneurs’ policy functions are linear in wealth. As
a result, the distribution of wealth within each type does not matter for aggregate demand: only
the distribution of wealth between types does. Accordingly, I look for a Markovian equilibrium
where the (endogenous) state variable is the share of aggregate wealth owned by entrepreneurs:
xt =

R
i2IEt

Wit di/
⇣R

i2It
Wit di

⌘
.

Using this notation, the market clearing equations (8) and (9) can be rewritten as:

xtrE + (1 � xt)cHt =
1
pt

, (8’)

xtaEt + (1 � xt)aHt = 1. (9’)

The first equation says that the wealth-weighted average consumption rate equals the income
yield of the tree while the second equation says that the wealth-weighted average equity share
equals one.
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We have five unknown functions of x: rt = r(xt), pt = p(xt), cHt = cH(xt), aHt = aH(xt),
and cHt = cH(xt). The market clearing equations (8’) and (9’) and the optimization conditions for
households (11), (12), and (13) constitute a system of five equations. To solve for the equilibrium,
it remains to solve for the law of motion of the endogenous state variable xt using Ito’s lemma:

Proposition 1. The law of motion of xt is given by

dxt = µxt dt + sxt dZt, where

µxt ⌘ xt(1 � xt)

✓
(aEt � aHt)(µRt � rt) + cHt � cEt � (aEt � aHt)s

2
Rt + (h + d + f)

✓
p

xt
� 1 � p

1 � xt

◆◆

sxt ⌘ xt(1 � xt)(aEt � aHt)sRt.

The volatility of xt corresponds to the difference in risk exposure between entrepreneurs and
households. The drift of xt is the sum of four terms: the difference in portfolio returns between en-
trepreneurs and households, the difference in their consumption rates, an Ito’s term that accounts
for the difference in their risk exposures, and a demography term related to the overlapping gen-
eration setting (i.e., due to population growth and death).

Due to the demography term, we have µxt(0) > 0 and µxt(1) < 0. Together with sxt(0) =

sxt(1) = 0, this ensures that the boundaries xt = 0 and xt = 1 are not absorbing states; that is, that
the process (xt)t2R has a stationary distribution (Karlin and Taylor, 1981).19

3.3 Characterizing the wealth distribution

I now study the cross-sectional distribution of wealth implied by the model. Because the economy
grows over time, I focus on individual wealth normalized by the average wealth in the economy:
wit ⌘ Wit/(ptYt). Using Ito’s lemma, the law of motion of wit for household i of type j 2 {E, H}
is given by20

dwit
wit

= µwjt dt + swjt dZt + nwjt dBit, where

µwjt ⌘ rt + ajt(µRt � rt)� cjt � g � µpt � sspt � (ajt � 1)s2
Rt

swjt ⌘ (ajt � 1)sRt

nwjt ⌘ 1j=EaEtn.

(14)

This equation implies that, within each type, the cross-sectional distribution of wealth growth is
log-normal. Given our assumption that wealth is log-normally distributed at birth, this implies
that, within each type and cohort, the distribution of wealth is log-normal. This observation gives

19This stationary distribution can be solved numerically by solving the Kolmogorov Forward equation associated
with the law of motion of the process.

20This can be obtained by combining the law of motion of individual wealth (5) and (7) with the law of motion of Yt
(2) and pt (3).
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rise to the subsequent formula.

Proposition 2. The cumulative distribution of wealth within type j 2 {E, H} at time t is:21

Pt
�
wit  w|i 2 Ijt

�
=
Z t

�•
(h + d)e�(h+d)(t�s)F

✓ log w � µj,s�t

nj,s�t

◆
ds,

where F(·) denotes the cumulative distribution function of a standard normal distribution, and µj,s�t and
n2

j,s�t denote the cross-sectional mean and variance of log wealth of individuals born at time s:

µj,s�t ⌘ log
✓

h + d + f

h + d

◆
� 1

2
n2

j,s�t +
Z t

s

✓
µwju �

1
2

s2
wju

◆
du +

Z t

s
swju dZu

n2
j,s�t ⌘ n2

0 +
Z t

s
n2

wju du

This proposition expresses the distribution of (log normalized) wealth as a mixture of normal
distributions corresponding to different cohorts. The mixture weights (h + d)e�(h+d)(t�s) corre-
spond to the relative fraction of individuals at time t born at time s. The mean µj,s�t and variance
n2

j,s�t of these normal distributions vary across cohorts and over time, reflecting the heterogeneity
in cohort ages, the economic conditions at their birth, and the history of aggregate shocks they
have experienced. While this Proposition focuses on the cumulative distribution of wealth, I ob-
tain in Appendix C.3 a similar expression for the average normalized wealth above a threshold
(or, equivalently, for the share of aggregate wealth owned by individuals above that threshold).

Note that Proposition 2 can be used to characterize the overall distribution of wealth across
types, since it is a simple mixture of the distribution within types:

Pt (wit  w|i 2 It) = pPt (wit  w|i 2 IEt) + (1 � p)Pt (wit  w|i 2 IHt) . (15)

Proposition 2 shows that the distribution of wealth depends non trivially of the history of
preceding aggregate shocks. I now show that one can obtain a much simpler characterization for
the wealth distribution by focusing on its right tail.

Definition 1. We say that the distribution of a random variable Y has a Pareto tail if there exists
z 2 (0, •) such that

log P(Y � y) ⇠ �z log y as y ! •.

We call z the tail index of the distribution.22

Intuitively, this definition says that a distribution has a Pareto tail when its complementary
cumulative distribution function is “close enough” to a Pareto distribution; that is, P(Y � y) µ

21Here, and in the rest of the paper, Pt (resp. Et) denotes the probability (resp. expectation) with respect to the
cross-sectional distribution of normalized wealth at time t.

22Here, and in the rest of the paper f (y) ⇠ g(y) as y ! • for two functions f (·) and g(·) means f (y)
g(y) ! 1 as y ! •.
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Cy�z as y ! •. A lower z corresponds to a lower decay rate; that is, a thicker tail. The next
proposition gives a simple characterization for the tail index of the wealth distribution.

Proposition 3 (Tail index). Denote z j the positive root of the equation:23

z jE


µwjt �
1
2

s2
wjt

�
+

1
2

z j(z j � 1)E
h
n2

wjt

i
= h + d for j 2 {H, E}, (16)

where E denotes the expectation with respect to the stationary density of x. Then

1. The distribution of wealth at time t within type j 2 {E, H} has a Pareto tail with tail index z j as long
as z j < •.

2. The distribution of wealth at time t has a Pareto tail with tail index min(zE, zH).

The first part of the proposition says that z j corresponds to the tail index for the wealth distri-
bution within type j 2 {E, H}. Because the overall wealth distribution is a mixture between these
two distributions, it inherits the minimum between these two tail indices, which gives that its tail
index is z = min(zE, zH). In the rest of this section, I assume that the right tail for entrepreneurs
is “thicker” than the right tail of households; that is zE < zH (this inequality will also hold in
the calibrated model).24 As shown in the Proof of Proposition 3, this implies that the relative pro-
portion of entrepreneurs converges to one in the right tail of the wealth distribution. Finally, the
fact that the share of wealth owned by entrepreneurs is a stationary process in (0, 1) implies that
min(zE, zH) > 1; that is, the right tail of the wealth distribution is thinner than Zipf’s law.

One surprising result of Proposition 3 is that the tail index does not vary over time or with
the history of aggregate shocks. To understand why, remember that the fraction of entrepreneurs
tends to one in the right tail of the wealth distribution. As a result, when an aggregate shock hits,
all agents in the right tail move by the same amount (in relative term), which implies that the tail
index (a measure of inequality within the rich) remains the same. Put differently, while top wealth
shares do respond to aggregate shock, they tend to respond similarly as the top percentile tends
to zero (or as wealth w tends to infinity). I discuss the impulse response of top wealth shares in
more details in Section 4.4.

To understand the analytical characterization of the tail index given in (16), it is useful to dis-
cuss it in the context of the existing literature studying stationary distributions. It is well known
that, in a static economy in which individual wealth follows a geometric diffusion with drift µ,
idiosyncratic volatility n, and death rate h + d, the stationary wealth distribution has a tail index

23In the case of j = H, zH should be understood as the limit of the positive root as E
⇥
n2

wHt
⇤
! 0; that is, zH =

(h + d)/E
h
µwHt � 1

2 s2
wHt

i
if E

h
µwHt � 1

2 s2
wHt

i
> 0, and +• otherwise.

24A sufficient condition is that entrepreneurs grow faster than households in average; that is, E
h
µwHt � 1

2 s2
wHt

i


E
h
µwEt � 1

2 s2
wEt

i
.
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given by the positive root of25

zµ +
1
2

z(z � 1)n2 = h + d. (17)

Proposition 3 extends this fundamental result along two dimensions; that is, to an economy in
which the dynamics of individual wealth varies over time and is exposed to aggregate shocks. To
account for the first dimension (i.e., time-varying dynamics), µ and n2 must be replaced, respec-
tively, by the time-averaged cross-sectional drift and variance of wealth growth; that is, E

⇥
µwjt

⇤

and E
h
n2

wjt

i
. To account for the second dimension (i.e., aggregate shocks), the geometric drift must

be adjusted by an Ito’s term, � 1
2 E
h
s2

wjt

i
, that captures the negative effect of aggregate shocks on

the time-averaged logarithmic growth of individuals at the top.
I conclude this section by giving an alternative interpretation of Proposition 3. Dividing (16)

by z j gives:

E


µwjt �
1
2

s2
wjt

�
+

1
2
(z j � 1)E

h
n2

wjt

i
� 1

z j
(h + d) = 0. (18)

This equation can be seen as a balance equation for top wealth shares. Indeed, the left-hand
side corresponds to the time-averaged logarithmic growth of top wealth shares: the first term,
E
h
µwjt � 1

2 s2
wjt

i
, corresponds to the time-averaged logarithmic growth of the wealth of agents

initially in the top while the second and third terms account for the effect of composition changes
in top percentiles due to idiosyncratic volatility and demographic forces, respectively (see Gomez,
2023 for a proof in the case of a stationary economy). For top wealth shares to neither grow or
shrink on average over time, their logarithmic growth must average to zero, which gives (18).

3.4 Discussion

To focus on the intuition, I have described a parsimonious model of heterogeneous exposure to
aggregate risk. I now briefly discuss three extensions of the baseline model that would make it
more realistic: (i) distinction between labor and capital income, (ii) the presence of hand-to-mouth
households, and (iii) arbitrary heterogeneity in initial endowment. I show that these extensions
would not affect asset prices nor two key moments of the wealth distribution: its tail index and
the elasticity of top wealth shares to stock market returns. This justifies my approach of focusing
on these two moments when calibrating the model in the next section.

Capital and labor income. In the baseline model, agents only earn one type of income. In reality,
agents earn both labor and capital income. This distinction potentially matters when mapping the
model to the data: wealth, in the model, corresponds to the capitalized value of all future income
promised to an individual (i.e. “total wealth”), while observed wealth, in the data, only corre-
sponds to the capitalized value of future capital income (i.e. “financial wealth”).26 In Appendix

25See, for instance, Reed (2001).
26See, for instance, Catherine et al. (2020) and Greenwald et al. (2022b).
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C.4, however, I show that the tail index of the wealth distribution as well as the elasticity of top
wealth shares to stock market returns remain the same whether one considers the distribution of
“financial wealth” or the distribution of “total wealth”. This justifies my approach of abstracting
away from the difference between the two concepts in the baseline model.

Hand-to-mouth households. I now turn to the presence of hand-to-mouth households. In the
model, households can freely trade in financial markets. In reality, a lot of households face fi-
nancial frictions. To account for this fact, the model could be extended to assume that a third
type of agents simply consume the income they are endowed with every period. The key point is
that these agents would not matter for asset prices as they do not trade assets. Furthermore, they
would not affect the elasticity of top wealth shares to stock returns or the tail index of the wealth
distribution as they do not appear in top percentiles.

Heterogeneity among newborns. Finally, while I have assumed that the initial distribution of
wealth among newborns is log-normally distributed, this parametric assumption (as well as the
value of its standard deviation) does not affect asset prices as agents have homothetic preferences.
Furthermore, as long as the initial distribution is thin-tailed, its shape does not affect the fact that
entrepreneurs dominate in the right tail of the wealth distribution, and, as a result, its does not
affect the elasticity of top wealth shares to stock market returns nor the tail index of the wealth
distribution.27

4 Quantitative analysis

I now turn to the quantitative implications of the model. Section 4.1 presents the calibration,
Section 4.2 discusses the equilibrium, Section 4.3 studies the volatility of asset prices in the model,
while Section 4.4 studies the impulse response function of entrepreneurs wealth and top wealth
shares to aggregate shocks.

4.1 Parameters

The model has thirteen parameters that I calibrate to match moments related to the U.S. economy.

Demography and endowment. I start with the five parameters related to demography (h, d) and
to the endowment process (g, s, f). The population growth rate h is chosen to match the annual
growth of the number households in the U.S. since 1913; that is, h = 1.5%. The death rate d is

27To better understand the latter claim, note that the normalized wealth of an agent at time t can be written as the
product of normalized wealth at birth and the growth of normalized wealth since birth, where the two variables are
independently distributed. As is well known in the literature, the tail index of the product of two independent random
variables is equal to the minimum of the tail indices for each variables. As a result, the distribution of initial wealth for
newborn agents does not affect the tail index of the overall wealth distribution as long as it has a thin tail.
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chosen to match the annual death rate of households in the top 0.5% estimated by Kopczuk and
Saez (2004); that is, d = 2.5%. This value is roughly consistent with the 2.2% annual death rate in
the top 400 for the 1983-2017 period measured in Gomez (2023).

The drift g and volatility s of the endowment process are chosen to match, respectively, the
average and standard deviation of the growth of time-averaged annual consumption per capita;
that is, g = 2% and s = 4%. The depreciation rate of trees is chosen to match the 2.5pp difference
between the growth rate of dividends in the economy and the dividend growth of existing firms
in the economy (respectively, g + h and g � f in the model), which gives f = 1%.28

Wealth dynamics of entrepreneurs. I now turn to the four parameters related to the wealth dy-
namics of entrepreneurs (aE, n, rE, p). The share of wealth invested in equity by entrepreneurs,
aE, is chosen to match the regressions of the growth of top wealth shares on equity returns esti-
mated in Section 2. To interpret these regressions, remember that in the model, agents only trade
all-equity firms (or trees). In reality, firms issue a mix of debt and equity, and therefore levered
equity correspond to a levered claim on the underlying firms. Following Modigliani-Miller logic,
the instantaneous return on this levered equity (i.e., the “stock market return”) is:

dRMt

RMt
= (rt + l(µRt � rt))dt + lsRt dZt, (19)

where l denotes the market leverage of the corporate sector (i.e., the ratio between the market
value of all liabilities and the market value of equity).29 As a result, regressing the instantaneous
growth of aggregate wealth on stock market returns in the model estimates 1/l, while regress-
ing the growth of the average wealth of entrepreneurs on stock market returns estimates aE/l.
Together with the estimates reported in Table 1, this implies l = 2.3 and aE = 2.30 Note that
the estimate for aE, while high, tends to be a bit lower than existing asset pricing models with
heterogeneous stockholders, that do not use the dynamics of top wealth inequality to discipline
this parameter. For instance, Gârleanu and Panageas (2015) calibration implies that households
at the top of the wealth distribution have an average exposure to aggregate shocks aE ⇡ 2.5,
while Di Tella (2017) calibration implies that the average exposure of financial intermediaries to
aggregate shocks is aE ⇡ 2.8.

The idiosyncratic volatility of trees, n is chosen to match the 20% annual cross-sectional dis-
persion of the wealth growth for agents at the top of the wealth distribution (

q
E
⇥
a2

Etn
2
⇤

in the
model), as measured in Gomez (2023); that is, n = 10%. This value is consistent with similar
reduced-form evidence from Sweden Bach et al. (2020) in Sweden, as well as existing calibrations

28More precisely, Gârleanu et al. (2015) document a 2pp difference between the growth rate of dividends in the
economy and the dividend growth of existing firms in the S&P 500. I adjust this number to account for the fact that
acquisition accounts for 0.5pp of the growth of assets of firms in Compustat.

29See Barro (2006) for a similar approach.
30More precisely, using the exposure for the top 0.01% gives aE = 1.8 while the exposure for the top 400 gives

aE = 2.3. I use the average between the too to calibrate aE.
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by Angeletos (2007) and Benhabib et al. (2011).
The entrepreneur consumption rate, rE, is chosen to match the tail index of the wealth distribu-

tion. More precisely, I use the expression for the tail index z given in Proposition 3, together with
the calibrated values for (d, h, n), to back out the average logarithmic growth of entrepreneurs
relative to the economy E

⇥
µwEt � 1

2 s2
wEt
⇤
. Klass et al. (2006) and Vermeulen (2018) measure a

power law exponent for the wealth distribution of z = 1.5. Plugging this number into (18) im-
plies an estimate for the average logarithmic growth of entrepreneurs relative to the economy of
E
⇥
µwEt � 1

2 s2
wEt
⇤
⇡ 1.7%.

In a second step, I use this estimate to infer the consumption rate of entrepreneurs. More
precisely, the average logarithmic growth of entrepreneurs relative to the economy can be written
as the difference between the average logarithmic growth of entrepreneurs and the logarithmic
growth rate of the economy:31

E


µwEt �
1
2

s2
wEt

�
= E


rt + aEt(µRt � rt)�

1
2

a2
Ets

2
Rt

�

| {z }
Average logarithmic return

of entrepreneurs

�rE �
✓

g � 1
2

s2
◆

.
| {z }

Logarithmic growth rate
of economy

(20)

Given the values of (g, s), the logarithmic growth rate of the economy is 1.9%. To obtain an
estimate for the average logarithm return of entrepreneurs, I use moments on asset prices over
the sample 1913�2020 (i.e. the time sample for which we have data on top wealth shares). As
reported in Table 3, the average logarithmic (real) risk-free rate is E [rt] = 0.3%, the average
logarithmic stock market return is E

⇥
rt + l(µRt � rt)� 1

2 l2s2
Rt
⇤
= 6.4%, and its standard de-

viation is
p

E [l2sRt] = 19.3%. Combining these estimates gives an average logarithm return
for entrepreneurs of 5.8%. Plugging these estimates into (20) implies a consumption rate of en-
trepreneurs rE = 2.2%.32

I then pick the population share of entrepreneurs to match the proportion of households that
report that more than half of their wealth invested in equity in the Survey of Consumer Finances
(Table B4); that is, p = 9%. Note that this parameter is, comparatively, a bit difficult to pin down
since, in reality, there exists a continuum between households and entrepreneurs. Fortunately, the
sensitivity analysis reported in Appendix Table D7 shows that the implication of the model for
asset prices is not particularly sensitive to the value for p. In any case, note that our parameter
value is roughly consistent with the 7.5% proportion of entrepreneurs reported in Cagetti and
De Nardi (2006), based on the proportion of U.S. households who are self-employed and who
own a business for which they have an active management role.

31Note that I used the fact that the timed-average drift of log asset prices is zero; that is, E
h
µpt � 1

2 s2
pt

i
= 0.

32While this method is a bit indirect, I show in Appendix D.1 that I obtain similar results if I estimate the consumption
rate of top entrepreneurs using individual data from Forbes 400 instead.
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Household preferences. I calibrate the remaining three parameters related to households’ pref-
erences (their SDR r, their EIS y, and their RRA g) to jointly match four asset price moments:
the average and standard deviation of the risk-free rate and of stock market returns from 1913 to
2020, which are reported in Table 3. Formally, denote q ⌘ (r, p, g) the vector of parameters and
m(q) the vector of moments implied by these parameters after simulating the model; that is, the
average and standard deviation of the risk-free rate and of stock market returns. I pick the vector
of parameters q̂ which minimizes the distance (m̂ � m(q))0 (m̂ � m(q)), where m̂ denotes the four
moments in the data. For the sake of realism, I only search for an RRA g and an inverse EIS 1/y

below 20, as well as a SDR r below 10%.
Table 2 reports the set of parameters that minimize (m̂ � m(q))0 (m̂ � m(q)). I estimate a rela-

tively high SDR (r = 10%), a high RRA (g = 10.3), and a low EIS (y = 0.05). Note that such a low
EIS is consistent with evidence from the micro data for the average household (Vissing-Jørgensen,
2002; Best et al., 2020). It is also consistent with existing calibrations of asset pricing models with
heterogeneous agents (Guvenen, 2009 ; Gârleanu and Panageas, 2015).

Initial distribution. Finally, I pick the standard deviation of the initial distribution of logarithmic
wealth for newborns, n0, to match the level of the share of wealth owned by the top 1% , which
averages 33% between 1913 and 2020. This gives me n0 = 1.6. As highlighted in Section 3, this
parameter solely affects the shape of the wealth distribution, which is why I calibrate it after all
other parameters have been set.

Table 2: Parameters

Description Symbol Value Target

Demography and endowment
Population growth rate h 1.5% Growth rate number U.S. hhs
Death hazard rate d 2.5% Death rate at the top
Endowment growth rate g 2% Per capita growth rate of consumption
Endowment volatility s 4% SD of time-averaged consumption
Tree depreciation rate f 1% Growth rate public firms
STD initial endowment. n0 1.6 Average wealth share top 1%

Entrepreneurs’ dynamics
Entrepreneur equity share aE 2 Regression growth top 0.01% wealth on stock returns
Tree idiosyncratic volatility n 10% Dispersion wealth growth at the top
Entrepreneur SDR rE 2.2% Tail index of wealth distribution
Entrepreneur pop. share p 9% Pct. hhs with more than half of wealth in equity

Household preferences
Household SDR r 10% Asset price moments
Household EIS y 0.05 Asset price moments
Household RRA g 10.3 Asset price moments

Notes: This table summarizes the calibration discussed in Section 4.1. Each parameter is given at the annual frequency.
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Table 3: Targeted Moments

Moments Data Model

Average interest rate 0.3% 4.0%
Standard deviation interest rate 0.9% 0.5%
Average equity return 6.4% 6.9%
Standard deviation equity return 19.3% 15.6%

Notes: The table reports the moments in the data (measured over the 1913-2020 period) and in the calibrated model. The interest rate
is constructed as the nominal interest rate minus the inflation rate. Each moment is given at the annual frequency.

4.2 Studying the equilibrium

I now examine how well the calibrated model matches asset prices and top wealth inequality. I
also analyze the impulse response of important economic quantities in the calibrated model.

Matching asset prices. Table 3 reports the asset price moments implied by the calibrated model.
The calibrated model matches very well the average of stock market returns (6.4% in the data
versus 6.9% in the model) as well as their standard deviation (19.3% in the data versus 15.6% in
the model). Note, however, that the calibrated model tends to overestimate the level of the interest
rate (0.3% in the data versus 4.0% in the data), even though it matches well its low standard
deviation (0.9% in the data versus 0.5% in the model). Note that measuring asset price moments
starting from 1871, as in Gârleanu and Panageas (2015), would give an average interest rate of
2.8%, which is closer to the one implied by the model.

The fact that the calibrated model implies an interest rate higher than the data is due to some
tension, in the model, between matching the high standard deviation of returns and matching a
low interest rate. To understand why, note that the volatility of asset prices increases with the
heterogeneity in consumption rates between households.33 Given that the consumption rate of
entrepreneurs is pinned down by the tail index of the wealth distribution, this implies that, in
the model, the standard deviation of returns increases with the consumption rate of households.
However, a high consumption rate for households leads to a high average consumption rate in
the economy, and, therefore, to a high interest rate to clear the goods market.34 Consistently with
this discussion, Appendix Table D7 reports the sensitivity of asset price moments to the calibrated
parameters and shows that household preferences that increase the standard deviation of returns
also increase the average interest rate.

Second, the calibrated model captures well the effect of excess stock market returns on top
wealth inequality. More precisely, Appendix Figure D5 shows that local projections of the average
wealth in top percentiles on excess stock returns in the model and in the data are very similar,
for all top percentiles p 2 {100%, 1%, 0.1%, 0.01%, Top 400} and horizons 0  h  8 (Appendix

33Indeed, differentiating the market clearing condition for the goods market (8’) give ∂x log p =
p (cHt � rE � (1 � x)∂xcHt).

34Again, this can be seen through the market clearing condition for the goods market (8’).
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Figure D6 presents the same exercise for top wealth shares). This good fit partly reflects the fact
that l (resp. aE) was chosen to match the response of the average wealth in the economy (resp. in
the top 0.01%) to excess stock returns. What is non trivial is that the model matches very well (i)
the gradual increase in the wealth exposure to stock market returns across the wealth distribution
(in the model, this is driven by the gradual increase of the proportion of entrepreneurs in the right
tail), as well as (ii) the slow rate of decay of these local projections with the horizon. I will discuss
the impulse response of top wealth shares to aggregate shocks in more detail in Section 4.4.

Impulse response functions. I now examine the impulse response of asset prices and expected
returns to aggregate shocks. For any quantity that depends smoothly on the state variable gt =

g(xt), I denote its Infinitesimal Impulse Response Function (IIRF) as the effect of an infinitesimal
aggregate shock on its expected value at horizon h starting from the initial state x:35

IIRFg(xt, h) ⌘ ∂E [g(xt+h)|xt = x]
∂Zt

= E


∂xh
∂x0

∂xg(xh)|x0 = x
�

sx(x), (21)

where ∂xt+h/∂xt denotes the stochastic derivative of the process (xt)t2R at horizon h with respect
to its value at time t. This process equals one at h = 0 and then evolves with law of motion:

✓
d

∂xt+h
∂xt

◆.✓∂xt+h
∂xt

◆
= ∂xµx(xt+h)dh + ∂xsx(xt+h)dZt+h. (22)

One key advantage of working in continuous-time is that this impulse response function can be
computed analytically, even though it depends non-linearly with the horizon h and the state vari-
able x.36 Figure 2 plots E

⇥
IIRFg(x, h)

⇤
, the average IIRF across the state space, as a function of the

horizon h for several important quantities in the model: the price-to-income ratio pt, the wealth-
to-consumption ratio of households 1/cHt, the risk-free rate rt, and expected log stock market
returns. These plots summarize the key mechanism at the heart of the model: in response to an
aggregate shock, the share of wealth owned by entrepreneurs increases (as they own levered po-
sition in risky assets), which increases asset prices and decreases expected returns in equilibrium
(as they have a higher demand for assets). As a complement to these impulse response functions,
I also plot in Appendix Figure D7 the same quantities as a function of the state variable x.

These impulse response functions reveal that aggregate shocks generate very persistent effects
on equilibrium prices. In fact, as discussed in Appendix D.2, all infinitesimal impulse response

35See Borovička et al. (2014) and Alvarez and Lippi (2022) for related definitions.
36Lemma 2 (stated and proven in Appendix D.2) implies that IIRFg can be obtained as the solution of the linear PDE

∂hIIRFg(x, h) = ∂xµx(x)IIRFg(x, h) +
⇣

µx(x) + sx(x)∂xsx(x)
⌘

∂xIIRFg(x, h) +
1
2

s2
x (x)∂xxIIRFg(x, h),

with initial condition IIRFg(x, 0) = ∂xg(x).
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Figure 2: Infinitesimal impulse response functions
Notes: This figure plots the average infinitesimal impulse response function of different quantities; that is, h ! E[IIRFg(x, h)] for

different functions of the state variable g(·). The expected log equity return corresponds to the expected log return of unlevered
equity; that is, r + µR � 1

2 s2
R. These graphs can be interpreted as the first-order response to a one standard-deviation annual shock in

aggregate income.

functions decay at the same exponential rate, which corresponds to the “spectral gap” of the in-
finitesimal generator associated with the process (xt)t2R. In the calibrated model, this decay rate
is approximately 0.05, which means that it takes more than a decade for the effect of an aggregate
shocks on asset valuations to decay by half (log 2/0.05 ⇡ 13 years). This low rate results from the
combination of two mean-reverting forces for the share of wealth owned by entrepreneurs after
an aggregate shock, which only act slowly: a mechanical force due to population renewal (death
and population growth) and an economic force due to the equilibrium decline in equity returns,
which decreases the growth rate of entrepreneurs relative to households.37

4.3 Examining the excess volatility of equity returns

Feedback loop. The calibrated model is able to match the high volatility of stock market returns
despite the low volatility of aggregate income (Table 3). This is due to a feedback loop between
asset prices and wealth inequality: on the one hand, an increase in asset prices increases wealth
inequality (as entrepreneurs own levered positions in equity) while, on the other hand, an increase
in wealth inequality increases asset prices (as entrepreneurs have a higher demand for assets). We
can formalize this feedback loop through two equations. The first equation is the law of motion of

37The decay rate due to demographic forces is d + h = 0.04; the remainder can be interpreted as the effect due to the
equilibrium decline in equity returns.
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the share of wealth owned by entrepreneurs (from Proposition 1):38

sx = x(aE � 1)sR, (23)

which says that, as long as entrepreneurs own levered positions in equity, (aEt > 1), the volatility
of the state variable increases with the volatility of equity returns. On the other hand, the definition
of returns (4) gives:

sR = s + sp = s + ∂x log p ⇥ sx, (24)

which says that, as long as entrepreneurs have a higher demand for assets (i.e. ∂x log p > 0), the
volatility of asset returns increases with the volatility of the state variable. Combining these two
equation allows us to solve for the volatility of stock market returns, sR:39

sR

|{z}
Return

volatility

=
1

1 � (aE � 1)x∂x log p| {z }
Multiplier � 1

⇥ s.
|{z}

Income
volatility

(25)

The volatility of equity returns, sR, is the product between the volatility of aggregate income,
s, and a multiplier. Intuitively, this multiplier increases with the relative risk exposure of en-
trepreneurs aE � 1 and with the elasticity of asset valuations to the share of wealth owned by en-
trepreneurs x∂x log p.40 In the calibrated model, we have aE = 2.0, E [x] ⇡ 0.23, and E [∂x log p] ⇡
1.77, which gives a multiplier around 1.7. In other words, the calibrated model generates a volatil-
ity of equity returns sR that is twice as high as the volatility of aggregate income s (and, therefore,
a volatility of stock market returns lsR that is four times as high as the volatility of aggregate
income). Hence, the model can generate the excess volatility of stock market returns.

An exact decomposition for the volatility of asset valuations. The endogenous response of asset
valuations to aggregate shocks plays a key role in generating volatile asset returns (remember that
(24) gives sR = s + sp). In the spirit of Campbell and Shiller (1988), I now relate this endogenous
response of asset valuations to changes in future risk-free rates and excess equity returns.

Proposition 4. The volatility of asset valuations can be decomposed into two terms, which correspond to
38This equation reflects the fact that, when an aggregate shock dZt hits the economy, the average wealth of en-

trepreneurs increases by aEsR dZt (in relative term) while the average wealth in the economy increases by sR dZt (in
relative term). As a result, the share of wealth owned by entrepreneurs increases by (aE � 1)sR dZt (in relative term).
Alternatively, the equation can be obtained by combining the volatility of x from Proposition 1 with the market clearing
condition for equity (9’).

39One way to understand this equation is that, following an aggregate income shock, the share of wealth owned by
entrepreneurs increases via (23), which, in turn, increases valuations via (24), which then increases the share of wealth
owned by entrepreneurs even more via (23). . . Summing all of these rounds gives sR as the sum of a geometric series
sR = Â•

k=0 (x(∂x log p)(aE � 1))k s, which is equivalent to (25).
40If either term is null, this multiplier is simply equal to one.
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the present value of changes in future risk-free rates and in future (log) excess returns, respectively.

sp(x) =�E
Z •

0
e�
R t

0
1
ps ds ∂xt

∂x0
∂xr(xt)dt

���x0 = x
�

sx(x)
| {z }

Risk-free rate channel

�E
Z •

0
e�
R t

0
1
ps ds ∂xt

∂x0
∂x

✓
µR(xt)�

1
2

s2
R(xt)� r(xt)

◆
dt
���x0 = x

�
sx(x).

| {z }
Excess return channel

(26)

where ∂xt/∂x0 denotes the stochastic derivative of the process (xt)t2R with respect to its value at t = 0.

This equation says that the response of asset valuations to aggregate shocks, sp, can be written
as the present value of changes in future expected returns. In turn, this term can be decomposed
into the contribution of change in future risk-free rates (“risk-free rate channel”) and changes in
future excess returns (“excess return channel”). Relative to the log-linearization introduced by
Campbell and Shiller (1988), this equation has three key advantages.41

First, this decomposition is exact, which is useful as Campbell and Shiller (1988)’s log lin-
earization can have large errors in non linear models (e.g. Pohl et al., 2018). Second, because of the
continuous-time setup, each term can be computed analytically as a solution of a linear ODE.42

Third, the decomposition is valid at each point of the state space x, and so it can be used to exam-
ine the relative effect of fluctuations in risk-free and expected equity returns in different parts of
the state space.

One can easily extend Proposition 4 to obtain a similar decomposition for the infinitesimal
impulse response function of asset valuations, IIRFlog p(x, h):43

IIRFlog p(x, h) ⌘�E
Z •

h
e�
R t

h
1
ps ds ∂xt

∂x0
∂xr(xt)dt

���x0 = x
�

sx(x)
| {z }

Risk-free rate channel

�E
Z •

h
e�
R t

h
1
ps ds ∂xt

∂x0
∂x

✓
µR(xt)�

1
2

s2
R(xt)� r(xt)

◆
dt
���x0 = x

�
sx(x),

| {z }
Excess return channel

(27)

41 This decomposition, which is new to my knowledge, holds in any asset pricing model in which the growth rate of
cashflows and expected returns are functions of some Markovian process. This essentially includes all textbook asset
pricing models (e.g. Campbell and Cochrane, 1999, Bansal and Yaron, 2004, Wachter, 2013, Brunnermeier and Sannikov,
2014, He and Krishnamurthy, 2013, Gârleanu and Panageas, 2015. . . ). See the proof of Proposition 4 in Appendix A for
more details.

42Lemma 2 from Appendix D.2 implies that, for any f , the function u(x) ⌘ E
R •

0 e�
R t

0
1
ps ds ∂xt

∂x0
f (x)dt

���x0 = x
�

can

be obtained as the solution of the linear ODE

0 = f (x) +
✓

∂xµ(x)� 1
p(x)

◆
u(x) +

⇣
µx(x) + sx(x)∂xsx(x)

⌘
∂xu(x) +

1
2

s2
x (x)∂xxu(x).

43This can be obtained by combining the expression for the impulse response function (21), IIRFlog p(x, h) =

E
h

∂xt
∂x0

∂x log p(xt)|x0 = x
i
, with the expression for ∂x log p(x) (42) obtained in the proof of Proposition 4.
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Figure 3: Decomposing the impulse response of asset valuations to aggregate shocks
Notes: This figure plots the average impulse response function for asset valuations, h ! E

⇥
IRRFlog p(x, h)

⇤
, as well as its decom-

position into a “risk-free rate channel” and an “excess return channel” given in (27). The graph can be interpreted as the first-order
response to a one standard-deviation annual shock in aggregate income.

where the special case h = 0 corresponds to the decomposition for sp given in (26). Figure 3
plots the associated decomposition for the average infinitesimal impulse response as a function of
the horizon, h ! E

⇥
IIRFlog p(x, h)

⇤
. In terms of magnitude, I find that the risk-free rate channel

and the excess return channel account for, respectively, 56% and 44% of the volatility of asset
valuations. This is roughly consistent with the impulse responses for log expected returns plotted
in Figure 2b, which show that the response in the risk free-rate and in excess-returns contribute
equally to the response in log expected returns to aggregate shocks. As shown in Appendix Figure
D8, this average value masks a large heterogeneity across the state space: in particular, news about
interest rates become a relatively larger source of asset price fluctuations as x, the share of wealth
owned by entrepreneurs, approaches zero.44

4.4 Impulse response of top wealth inequality

I now use the calibrated model to trace out the effect of aggregate shocks on top wealth shares over
the entire horizon. This analysis complements my empirical results, that focused on their short-
term responses (as standard errors from local projections become too large after a few years).

Impulse response of surviving entrepreneurs’ wealth. I first characterize the effect of an aggre-
gate shock on the average normalized wealth of “surviving” entrepreneurs. Here, and in the rest
of the paper, the term “surviving” entrepreneurs refers to the subset of entrepreneurs who remain
alive following the realization of the aggregate shock (up to the horizon of interest). As discussed
below, this object is a good starting point to understand the impulse response of top wealth shares.

44This comes from the fact that the gradient of the interest rate with respect to the state variable x increases as it
approaches zero (see Appendix Figure D7).
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Formally, I denote e(x, h) the impulse response of the average normalized wealth of surviving
entrepreneurs at horizon h starting from an economy in state x:45

e(xt, h) ⌘ ∂Et [log Et+h [wi,t+h|i 2 IE,t \ IE,t+h]]
∂Zt

. (28)

The next proposition characterizes this impulse response analytically.

Proposition 5. The effect of an aggregate shock on the average wealth of surviving entrepreneurs at horizon
h and starting from an economy in state x is:

e(x, h) = swE(x) + E
Z h

0

∂xt

∂x0
∂x

✓
µwE � 1

2
s2

wE

◆
(xt)dt

���x0 = x
�

sx(x). (29)

This proposition expresses the impulse response of surviving entrepreneurs as the sum of two
terms. The first term corresponds to the “instantaneous” effect of the aggregate shock on the
normalized wealth of entrepreneurs (i.e., at h = 0). The second term corresponds to the effect
of the aggregate shock on the logarithmic growth rate of entrepreneurs going forward (i.e., for
h > 0). Note that this proposition implies that e can be computed numerically using a version of
Feynman-Kac formula.46

Using the fact that swE = (aE � 1)(s + sp), one can rewrite this impulse response functions as
the sum of two terms capturing, respectively, the effect of changes in asset income and changes in
asset valuations:

e(x, h) = (aE � 1)s
| {z }

Due to the response
in asset income

+ (aE � 1)sp(x) + E
Z h

0

∂xt

∂x0
∂x

✓
µwE � 1

2
s2

wE

◆
(xt)dt

���x0 = x
�

sx(x)
| {z }

Due to the response
in asset valuation

.

(30)
The first term of this decomposition accounts for the response of asset incomes to aggregate
shocks. Indeed, an aggregate shock dZt increases the average income earned by entrepreneurs
by aEs dZt and the average income in the economy by s dZt. Hence, in the absence of any change
in the valuation of assets (their price-to-income ratios p), this aggregate shock permanently in-
creases the normalized wealth of entrepreneurs by (aE � 1)s dZt. This corresponds to the income
term in (30).

The second term of this decomposition accounts for the response of asset valuations to ag-
gregate shocks. On the one hand, the endogenous rise in asset valuations amplifies the initial

45The fact that it depends on the state of the economy purely though the value of the state variable at that time is
proven in Proposition 5 below.

46Lemma 2 (stated and proven in Appendix D.2) implies that that the function u(x, h) ⌘ E
hR h

0
∂xh
∂x0

f (xh)|x0 = x
i

can
be obtained as the solution of the linear PDE

∂hu(x, h) = f (x) + ∂xµx(x)u(x, h) +
⇣

µx(x) + sx(x)∂xsx(x)
⌘

∂xu(x, h) +
1
2

s2
x (x)∂xxu(x, h),

with initial condition u(x, 0) = 0.
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Figure 4: Decomposing the impulse response of the average wealth of surviving entrepreneurs
Notes: This figure plots the average impulse response of the (log) average (normalized) wealth of surviving entrepreneurs (i.e.h !

E [e(x, h)]), as well as its decomposition into the effect of changes in asset income and changes in asset valuations (30). The graph can
be interpreted as the first-order response to a one standard-deviation annual shock in aggregate income.

response of entrepreneurs’ wealth to an aggregate shock at h = 0, by (aE � 1)sp. On the other
hand, the resulting decline in future returns decreases their future growth rates at h > 0, by
E
h

∂xt
∂x0

∂x
�
µwE � 1

2 s2
wE
�
(xt)

���x0 = x
i

sx(x). The sum of these two forces corresponds to the valua-
tion term in (30).

To visualize the overall impulse response, Figure 4 plots E [e(x, h)] as a function of the horizon
h, as well as its decomposition (30) into the effect of changes in asset income and changes in asset
valuations. At h = 0, the two channels are quantitatively similar: half of the relative growth of
entrepreneurs’ wealth is due to an increase in their income, (aE � 1)s, while the other half is due
to an increase in the valuation of their assets, (aE � 1)sp. As the horizon h increases, however,
the effect of changes in asset valuations progressively declines and even becomes negative. In
other words, the positive effect of higher asset valuations for entrepreneurs’ wealth is more than
compensated by the negative effect of lower returns going forward. I analyze in more details the
effect of the rise in asset valuations in Appendix D.3.

Impulse response of top wealth shares. I now study the long-term response of top wealth shares
to aggregate shocks. Figure 5 plots the impulse response of the share of wealth owned by a top
percentile p 2 {1%, 0.1%, 0.01%, 0.001%} to an aggregate shock, up to an horizon of 100 years.
Consistently with the empirical evidence presented in Section 2.2, higher top percentiles respond
more to aggregate shocks. As discussed in Section 4.4, this reflects the fact that the relative propor-
tion of entrepreneurs increases to one in the right tail of the distribution.47 The key new takeaway
of the figure is that top percentiles takes a very long time to mean revert, with a speed of mean

47Formally, it is easy to show that the instantaneous response of the share of wealth owned by a top percentile p (at
h = 0) is given by wt(p)swe + (1 � wt(p))swH , where wt(p) represents the share of wealth owned by entrepreneurs in
the top percentile p at time t, which tends to swE at p ! 0.
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reversion that declines steeply in the right tail.48 To understand why, it is useful to distinguish
between two sources of mean reversion following an aggregate shock. The first source of mean
reversion is that higher valuations reduce the relative growth rate of entrepreneurs. This force,
which was at work in explaining the impulse response of the average wealth of surviving en-
trepreneurs, is not enough to fully bring back top wealth shares to their original values in the
long-run, as e(x, •) > 0.
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Top 0.1%

Top 0.01% 0.001% Top 400

Horizon h (Years)

Average wealth of surviving entrepreneurs

Figure 5: Impulse response of top wealth shares
Notes: This figure plots the infinitesimal impulse response for the average (normalized) wealth of surviving entrepreneurs; that is,

h ! E[e(x, h)]. The figure also plots the impulse responses of the (log) share of wealth owned by each top percentile to aggregate
income shocks, estimated using local projections on a very long sample of simulated data. The graph can be interpreted as the first-
order response to a one standard-deviation annual shock in aggregate income.

The second, and more essential, source of mean reversion is demographics. As time passes,
existing agents are gradually replaced by newborn agents, who are not directly impacted by an
aggregate shock that happened before their birth. The higher the top percentile, the longer it takes
for existing agents to be replaced by newborns, and, therefore, the longer it takes for aggregate
shocks to dissipate. Consistently with this idea, Figure 5 shows that the impulse response of
the top 0.001% and top 400 initially coincide with the impulse response of the average wealth
of surviving entrepreneurs, E[e(x, h)], until some point at which newborns start reaching the top
percentile. This analysis echoes Gabaix et al. (2016)’s finding that transition dynamics are slower
in the right tail: in the context of a stochastic economy, similar forces imply that aggregate shocks
have more persistent effects in the right tail.

Fluctuations of top wealth shares in the model versus data. So far, I have focused on the dy-
namics of top wealth shares in response to aggregate income shocks. I now use this analysis to
study the overall standard deviation of top wealth shares generated by the model, as aggregate
income shocks cumulate over time. The two concepts are intimately linked are the standard devi-

48In terms of magnitude, the horizon after which the initial effect of an aggregate shock is divided by three increases
from 31 years for the top 1% to 61 years for the top 400.
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ation of top wealth shares roughly corresponds to the area below its impulse response function.49

The first line of Table 4 reports the standard deviation of (log) top wealth shares in the cali-
brated model, using simulated data. The key observation is that this standard deviation increases
monotonically in the right tail. Glancing at Figure 5 reveals that this increase in the standard de-
viation of top wealth shares at the top is due to the combination of two forces (i) aggregate shocks
have larger effects on higher top percentiles on impact (due to the higher fraction of entrepreneurs
in top percentiles) (ii) higher top percentiles take a longer time to mean-revert (due to the longer
time it takes for newborns to reach top percentiles).

Table 4: Standard deviation of log top wealth shares

Top 1% Top 0.1% Top 0.01% Top 0.001%

Model (long sample) 0.09 0.18 0.28 0.35
Model (short sample) 0.07 0.13 0.19 0.19
Data 0.20 0.33 0.46

For the sake of parsimony, I have focused on a model in which the only reason top wealth
shares fluctuate over time is that wealthier agents have a higher wealth exposure to aggregate
shock. In the data, there may be additional sources of fluctuations in top wealth shares. One in-
teresting question is: how much fluctuations in top wealth shares can be explained by the model?
To facilitate the comparison between the model and the data, I compare the standard deviation
of top wealth shares in the data with the averaged standard deviation of top wealth shares in the
calibrated model, obtained by averaging the estimated standard deviations across simulated sam-
ples with the same length as the data (105 years).50 The results, reported in Table 4, reveal that
the calibrated model can account for approximately 40% of the standard deviation of top wealth
shares in the data. Said differently, the heterogeneous exposure of agents to aggregate shocks can
explain a sizable fluctuations of top wealth shares, but it cannot fully explain the fluctuations in
top wealth shares observed in the data.

A complementary way to assess “how much” of the fluctuations in top wealth inequality can
be explained by the model is to compare the realized dynamics of top wealth shares in the data
and in the model, after feeding the model with the realization for excess returns across the 20th
century. This exercise, done in Appendix D.4, reveals that the model can explain the persistent
decline in wealth inequality during the Great Depression, its rise immediately after WW2, and its

49Formally, the Clark-Ocone formula allows us to write the logarithm of the share of wealth owned by a top percentile
p as a moving average of past aggregate shocks. This gives, using Ito’s isometry:

log St = E[log St] +
Z t

�•
Es


∂ log St

∂Zs

�
dZs =) Var[log St] = E

"Z •

0
E0


∂ log Sh

∂Z0

�2
#

dh.

50This is because the naive estimate for the standard deviation of a persistent process suffers from a downward bias
in finite sample. Note that this is why I do not report the standard deviation of the Top 400 wealth share in the data, as
the time sample is too low to be informative (35 years).
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rise during the dot-com bubble. However, the model cannot fully explain the decline in inequality
in the 1940s, nor its rise beginning in the 1980s: overall, the model has a hard time reproducing
the U-shape of top wealth inequality. Hence, to fully account for the dynamics of top wealth
shares over the 20th century, one would need to augment the model with additional sources of
fluctuations in top wealth shares (beyond aggregate shocks), such as changes in taxes (Hubmer
et al., 2021), changes in saving rates (Saez and Zucman, 2016, Mian et al., 2020), changes in labor
income inequality (Rosen, 1981, Gabaix and Landier, 2008, Terviö, 2008, Straub, 2019), or changes
in idiosyncratic shocks (Benhabib et al., 2019; Atkeson and Irie, 2022; Gomez, 2023).

5 Conclusion

This paper examines theoretically and empirically the joint dynamics of asset prices and wealth
inequality in response to aggregate shocks. When an aggregate shock hits the economy, wealth
inequality increases. As wealth is re-balanced towards agents with a higher demand for assets,
asset valuations increase in equilibrium. This feedback loop between wealth inequality and asset
prices magnifies the effect of an aggregate shock on top wealth inequality in the short-run while
dampening it in the medium-run, as higher valuations are associated with lower asset returns
going forward.

Overall, my paper makes three distinct contributions. First, I document that the wealth of
households at the top of the wealth distribution is twice as exposed to stock market returns as the
wealth of the average household. Second, I characterize the wealth distribution in a Markovian
economy with aggregate shocks and I obtain a simple formula for its tail index in terms of the
average logarithmic return of households at the top of the wealth distribution. Third, I build
a heterogeneous-agent model that matches (and sheds light) on the impulse response of wealth
inequality and asset prices to aggregate shocks.

For simplicity, I only consider shocks to aggregate income in the model. However, the interplay
I describe between asset prices and wealth inequality would also appear with shocks that redis-
tribute aggregate income between labor and capital (Greenwald et al., 2022a, Moll et al., 2022),
shocks between young and old households (Gârleanu et al., 2012), or monetary policy shocks
(Silva, 2016, Kekre and Lenel, 2022). Moreover, this interplay between wealth inequality and asset
prices could have effects on real quantities as well, through changes in corporate investment poli-
cies or labor supply. Exploring these effects requires moving away from an endowment economy,
which I leave for future research.
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Proof of Proposition 1. By definition, we have xt =
⇣R

i2IEt
Wit di

⌘
/
⇣R

i2IEt
Wit di +

R
i2IHt

Wit di
⌘

.
Applying Ito’s lemma gives:

dxt = xt(1 � xt)

0

@
d
⇣R

i2IEt
Wit di

⌘

R
i2IEt

Wit di
�

d
⇣R

i2IHt
Wit di

⌘

R
i2IHt

Wit di

�

0

@
d
hR

i2IEt
Wit di

i

R
i2IEt

Wit di
�

d
hR

i2IHt
Wit di

i

R
i2IHt

Wit di

1

A
d
hR

i2Iit
Wit di

i

R
i2Iit

Wit di

1

A . (31)

Now, the instantaneous change in the aggregate wealth within each group j 2 {E, H} is given by:
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Plugging this into the law of motion of xt (31) gives
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Combining this expression with the law of motion of Wit for households (5) and entrepreneurs (7)
gives the result.

Proof of Proposition 2. Equation (14) implies the following law of motion for the logarithm of nor-
malized wealth for individual i in group j 2 {E, H}:
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Integrating over time, this implies that, for an individual born at time s  t,
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Proof of Proposition 3. In line with the typical approach in large deviations theory, the proof is struc-
tured in three distinct steps.51 In the first step, we use the existence of cross-sectional moments
of wealth of order lower than z j to prove that the limit superior of log Pt(wit � w|i 2 Ijt)/ log w
is lower than �z j for j 2 {E, H}. In the second step, we use the law of large numbers to prove
that the limit inferior of log Pt(wit � w|i 2 Ijt)/ log w is higher than �z j for j 2 {E, H}. In the
third step, we combine the two preceding to show that the limit of log Pt(wit � w|i 2 Ijt)/ log w is
exactly �z j for j 2 {E, H}, which implies that the limit of log Pt(wit � w|i 2 It)/ log w is exactly
�min(zH, zE). As the distribution of wealth is itself a random variable, all of these statement
should be understood as holding at any point in time t 2 R almost-surely (i.e. with probability
one).
Step 1. This step proves
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51See, for instance, the proof of the Gartner-Ellis theorem in Shwartz and Weiss (1995).
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Given this law of motion, Lemma (1) (stated an proven in Section C.2) implies that the process
(mjt(x)) remains finite as long as
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Combined with the definition of z j (16), this implies that mjt(x) is finite for x 2 (0, z j).52

We now use this result to derive an upper bound on the limit superior of the tail probability.

52In this case, we can also write mjt(x) in an integral form:

mjt(x) =

✓Z t

�•
(h + d)e

R t
s ((x(µwju� 1

2 s2
wju)+

1
2 x(x�1)n2

wju�(h+d))du+xswju dZu) ds
◆✓

h + d + f

h + d

◆x

e
1
2 x(x�1)n2

0 .
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For any x 2 (0, z j), Markov inequality implies

Pt(wit � w|i 2 Ijt) = Pt(w
x
it � wx |i 2 Ijt) 

mjt(x)

wx
.

Taking logarithms, dividing by log w, and passing to the limit w ! • gives

lim sup
w!•

log Pt(wit � w|i 2 Ijt)

log w
 �x.

As this inequality holds for any 0 < x < z j, it also holds in the limit x ! z j, which gives (34).
Step 2. This step proves

lim inf
w!•

log Pt(wit � w|i 2 Ijt)

log w
� �z j for j 2 {E, H}. (38)

We will show this using the law of large numbers, which, intuitively, disciplines the fraction of in-
dividuals in older cohorts who must be above a certain threshold. Formally, we start by rewriting
the probability of wealth being higher than a certain threshold from Proposition 2

Pt(wit � w|j 2 Ijt) =
Z •

s=�•
(h + d)e�(h+d)(t�s)

✓
1 � F

✓ log w � µj,s�t

nj,s�t

◆◆
ds

=
Z •

a=0
| log w|(h + d)e�(h+d)a log w

✓
1 � F

✓ log w � µj,t�a log w�t

nj,t�a log w�t

◆◆
da. (39)

where the second line uses the change of variable a = (t � s)/ log w.
We first tackle the simpler case j = H, for which E

⇥
n2

wHt
⇤
= 0. When E

⇥
µwHt � 1

2 s2
wHt
⇤
 0,

zH = • and (38) is trivial. Otherwise, we are in the case E
⇥
µwHt � 1

2 s2
wHt
⇤
> 0. The strong

law of large numbers implies that µH,t�a�t
a ! E

⇥
µwHt � 1

2 s2
wHt
⇤
. As a result, for any e > 0, there

exists a0 such that µH,t�a�t �
E[µwHt� 1

2 s2
wHt]

1+e a for a � a0. In turn, this implies that, for any log w �
E[µwHt� 1

2 s2
wHt]

1+e a0, we have µH,t�a log w�t � log w for any a � 1+e
E[µwHt� 1

2 s2
wHt]

. Combining this inequality

with (39) implies that, for any log w � max
✓

0,
E[µwHt� 1

2 s2
wHt]

1+e a0

◆
,

Pt(wit � w|i 2 IHt) �
Z •

1+e

E[µwHt�
1
2 s2

wHt]

(log w)(h + d)e�(h+d)a log w
✓

1 � F
✓ log w � µH,t�a log w�t

n0

◆◆
da

�
Z •

1+e

E[µwHt�
1
2 s2
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(log w)(h + d)e�(h+d)a log w 1
2

da

� 1
2

e
�(1+e) h+d

E[µwHt�
1
2 s2

wHt]
log w

.
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Taking logarithms, dividing by log w, and passing to the limit w ! • gives

lim inf
w!•

log P (wit � w|i 2 IHt)
log w

� �(1 + e)
h + d

E
⇥
µwHt � 1

2 s2
wHt
⇤ .

Since this inequality holds for any e > 0, we can pass to the limit e ! 0 to obtain (38).

lim inf
w!•

log Pt(wit � w|i 2 IHt)
log w

� � h + d

E
⇥
µwHt � 1

2 s2
wHt
⇤ = �zH.

We now tackle the more complex case j = E, for which E
⇥
n2

wEt
⇤
> 0. The strong law of

large numbers implies that µE,t�a�t
a ! E

⇥
µwEt � 1

2 s2
wEt � 1

2 n2
wEt
⇤

and n2
E,t�a�t

a ! E
⇥
n2

wEt
⇤

as a ! •.
Together with the asymptotic behavior of F, this implies that

lim
w!•

log
⇣

e�(h+d)a log wF
⇣

log w�µE,t�a log w�t
nE,t�a log w�t

⌘⌘

log w
= �I(a), where

I(a) ⌘ (h + d)a +
1
2

�
1 � aE

⇥
µwEt � 1

2 s2
wEt � 1

2 n2
wEt
⇤�2

aE
⇥
n2

wEt
⇤ ,

where the convergence is locally uniform in a. Hence, for any e > 0, there exists g > 0 and w such
that, for any v 2 (a � g, a + g) and w � w,

e�(h+d)v log wF
✓ log w � µE,t�v log w�t

nE,t�v log w�t

◆
� e�(1+e)I(a) log w.

Combining this inequality with (39) gives, for any w � w,

Pt(wit � w|i 2 IEt) �
Z a+g

a�g
(h + d)(log w)e�(h+d)v log wF

✓ log w � µE,t�v log w�t

nE,t�v log w�t

◆
dv

� 2g(h + d)(log w)e�(1+e)I(a) log w.

Taking logarithms, dividing by log w, and passing to the limit w ! • gives

lim inf
w!•

log Pt(wit � w|i 2 IEt)
log w

� �(1 + e)I(a).

Since a 2
�
0, 1/|E

⇥
µwEt � 1

2 s2
wEt � 1

2 n2
wEt
⇤
|
�

and e > 0 were chosen arbitrarily, we get

lim inf
w!•

log Pt(wit � w|E 2 IEt)
log w

� � inf
a2(0,1/|E[µwEt� 1

2 s2
wEt�

1
2 n2

wEt]|)
{I(a)} . (40)
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The minimum for I(·) on
�
0, 1/|E

⇥
µwEt � 1

2 s2
wEt � 1

2 n2
wEt
⇤
|
�
, which is attained for

a⇤
E =

1q
E
⇥
µwEt � 1

2 s2
wEt � 1

2 n2
wEt
⇤2

+ 2(h + d)E
⇥
n2

wEt
⇤ ,

equals IE(a⇤
E) = zE. Hence, (40) implies

lim inf
w!•

log Pt(wit � w|E 2 IEt)
log w

� �zE. (41)

Step 3. Combining the results proven in the two previous steps gives that

lim
w!•

log Pt(wit � w|i 2 Ijt)

log w
= �z j for j 2 {E, H},

which is the first part of the Proposition. Combining this result with (15) gives

lim
w!•

log Pt(wit � w|i 2 It)
log w

= �min(zE, zH).

To conclude, note that E
⇥
n2

wEt
⇤
> 0 implies that zE < •, and, therefore, z = min(zE, zH) < •.

The fact that x has a stationary distribution implies that the cross-sectional moment of order one
is finite for both types, which implies min(zE, zH) > 1. Finally, note that, if zE < zH, then

lim
w!•

log
✓

Pt(wit � w|i 2 IHt)
Pt(wit � w|i 2 It)

◆
= �•,

which implies that the relative fraction of households (resp. entrepreneurs) converges to zero
(resp. one) in the right tail.

Proof of Proposition 4. I prove a slightly more general proposition. Consider an asset with income
flow Et[d log Dt] = gD(xt) and required return Et[d log Rt] = gR(xt), where gD(·) and gR(·) are
both smooth functions. Denote pt(x) the ratio of the asset value to its income, which solves the
market pricing equation:

gR(xt)dt =
1

p(xt)
dt + gD(xt)dt + Et [d log p(xt)] .

Differentiating with respect to x0 gives

∂xt

∂x0
∂xgR(xt)dt = � ∂xt

∂x0

1
p(xt)

∂x log p(xt)dt +
∂xt

∂x0
∂xgD(xt) + Et


d
✓

∂xt

∂x0
∂x log p(xt)

◆�
.

46



Rearranging,

Et


d
✓

e�
R t

0
1
ps ds ∂xt

∂x0
∂x log p(xt)

◆�
= e�

R t
0

1
ps ds ∂xt

∂x0
∂x (gR(xt)� gD(xt)) .

Integrating forward gives

∂x log p(x) = E
Z •

0
e�
R t

0
1
ps ds ∂xt

∂x0
∂x (gD(xt)� gR(xt))dt

���x0 = x
�

. (42)

Multiplying both sides by sx gives

sp(x) = E
Z •

0
e�
R t

0
1
ps ds ∂xt

∂x0
∂x (gD(xt)� gR(xt))dt

���x0 = x
�

sx(x).

Applying this formula in the context of our model, where gD(x) = g � f � 1
2 s2 and gR(x) =

µR � 1
2 s2

R, gives

sp(x) = �E
Z •

0
e�
R t

0
1
ps ds ∂xt

∂x0
∂x

✓
µR(xt)�

1
2

s2
R(xt)

◆
dt
���x0 = x

�
sx(x).

Adding and subtracting by ∂xr(x) in the right-hand-side gives the result.

Proof of Proposition 5. Consider an entrepreneur i 2 IEt \ IEt+h. We can express the normalized
wealth of the entrepreneur at time t + h in terms of their wealth at time t:

wi,t+h = wi,te
R t+h

t ((µwEs� 1
2 s2

wEs� 1
2 n2

wEs) ds+swEs dZs+nwEs dBis).

Averaging across all entrepreneurs in IEt \ IEt+h:

Et+h [wi,t+h|i 2 IEt \ IEt+h] = Et [wit|i 2 IEt \ IEt+h] e
R t+h

t ((µwEs� 1
2 s2

wEs) ds+swEs dZs).

Taking logarithms and the expectations at time t

Et [log Et+h [wi,t+h|i 2 IEt \ IEt+h]] = log Et [wit|i 2 IEt \ IEt+h] + Et

Z t+h

t

✓
µwEs �

1
2

s2
wEs

◆
ds
�

.

Differentiating with respect to an aggregate shock at time t:

∂Et [log Et+h [wi,t+h|i 2 IEt \ IEt+h]]
∂Zt

= swEt(xt) + ∂xE
Z h

0

✓
µwE � 1

2
s2

wE

◆
ds|x0 = xt

�
,

which gives the result. Note that the right-hand side only depends on the horizon h and the value
of x at t, which justifies the notation e(x, h).
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Online Appendix

B Appendix for Section 2

B.1 Alternative specifications

Controlling for predetermined variables. To assess the robustness of the empirical findings dis-
cussed in Section 2.2, I now augment the baseline specifications with a set of variables known at
time t � 1; that is, I estimate the models:

log
✓Wp,t+h

Wp,t�1

◆
� (h + 1) log R f ,t = ap,h + bp,h

�
log RM,t � log R f ,t

�
+ Â

c2C
gcZc,t�1 + ep,t+h,

log
✓Sp,t+h

Sp,t�1

◆
= ap,h + bp,h(log RM,t � log R f ,t) + Â

c2C
gcZc,t�1 + ep,t+h,

(43)

where {Zc,t}c2C denotes a set of additional controls. The special case C = ? (no controls) cor-
responds to the baseline specifications (1) and (1’) discussed in the main text. The advantage of
adding pre-determined variables is that they help to capture any information known at time t � 1,
making it easier to interpret the estimates from local projections as the effect of “unexpected” stock
market returns on the dependent variable. Note, however, that adding pre-determined variables
means that there is no longer a one-to-one mapping between the response of the average wealth
in top percentiles and the response of top percentile wealth shares; that is, bp,h 6= bp,h � b100%,h in
general.

By analogy with the omitted variable bias, it is particularly important to add variables cor-
related with expected excess stock returns and/or variables correlated with the expected growth
of the dependent variable. For the first set of variables, I add the dividend-price ratio, which
is a known predictor of excess returns, as well as a five-year moving average of past excess re-
turns. For the second set of variables, I add two lags of the dependent variables, i.e. log Wp,t�1

and log Wp,t�2 for the average wealth in top percentiles and log Sp,t�1 and log Sp,t�2 for the top
percentile wealth share. Note that adding two lags means that I implicitly control for the lagged
growth of the dependent variable, which helps to capture low-frequency changes in the expected
growth of top percentiles. I also add the cross-sectional variance in stock market returns, follow-
ing works by Atkeson and Irie (2022) and Gomez (2023) who stress the role of this quantity in
determining the low-frequency fluctuations in top wealth shares.53

Table B1 reports the results. Overall, I find very similar estimates for bp,3 and bp,3 as the ones
obtained in the baseline specification (Table 1). The intuition is that most of the variations in excess
stock market returns comes from variations in unexpected excess stock market returns, which is

53More precisely, I control by the synthetic “between” term constructed in Section 5 of Gomez (2023); that is, (zt�1 �
1)/2n2

t�1, where zt�1 is a local measure of the Pareto exponent in year t � 1, zt = 1/(1 � log10(S0.1%,t/S0.01%,t)) and
n2

t�1 is the proportional to the cross-sectional variance of stock market returns for public firms in year t � 1.
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uncorrelated with variables known at time t � 1.54

Table B1: Exposure to stock market returns after controlling for pre-determined variables

Top 100% Top 1% Top 0.1% Top 0.01% Top 400

(1) (2) (3) (4) (5)

Panel A: Average wealth
Excess returns 0.38⇤⇤⇤ 0.50⇤⇤⇤ 0.61⇤⇤⇤ 0.79⇤⇤⇤ 0.79⇤⇤⇤

(0.09) (0.11) (0.13) (0.19) (0.26)
Lagged average wealth 0.04 −0.17 −0.11 0.00 −1.11

(0.25) (0.22) (0.22) (0.24) (0.93)
Two-year lagged average wealth −0.07 0.17 0.13 0.01 0.95

(0.26) (0.23) (0.22) (0.25) (0.79)
Lagged cross-sectional variance of returns −1.96⇤⇤ −1.05 −0.45 0.20 −5.79

(0.84) (0.90) (1.02) (1.30) (4.27)
Lagged dividend-price ratio −0.11⇤⇤ −0.09 −0.08 −0.13 −0.16

(0.05) (0.06) (0.08) (0.11) (0.29)
Five-year average lagged excess returns −0.82⇤⇤⇤ −0.75⇤⇤ −0.65 −0.65 0.31

(0.31) (0.36) (0.42) (0.49) (1.39)
Adjusted R2 0.23 0.25 0.23 0.21 0.34
N 102 102 102 102 30

Panel B: Wealth share
Excess returns 0.12⇤⇤ 0.23⇤⇤ 0.40⇤⇤⇤ 0.34⇤

(0.05) (0.09) (0.14) (0.18)
Lagged wealth share −0.03 −0.06 −0.08 −0.74

(0.29) (0.27) (0.26) (0.46)
Two-year lagged wealth share −0.13 −0.16 −0.20 0.39

(0.28) (0.26) (0.24) (0.41)
Lagged cross-sectional variance of returns 1.24⇤⇤⇤ 2.40⇤⇤⇤ 3.59⇤⇤⇤ −4.42⇤⇤⇤

(0.37) (0.69) (1.08) (1.40)
Lagged dividend-price ratio −0.02 −0.07⇤⇤ −0.18⇤⇤⇤ −0.05

(0.02) (0.03) (0.06) (0.12)
Five-year average lagged excess returns −0.04 0.02 −0.00 0.25

(0.11) (0.20) (0.30) (0.75)
Adjusted R2 0.25 0.29 0.32 0.49
N 102 102 102 30

Notes: This table reports the coefficients obtained in the regression of the growth of the average wealth in top percentiles on excess
stock returns controlling for a set of pre-determined variables; that is, equation (43) with h = 3. Estimation is done via OLS. Standard
errors are in parentheses and are estimated using heteroskedasticity consistent standard errors. ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at the
10%, 5%, 1% levels, respectively.

Controlling for future excess returns. As seen in Figure 1, the exposure of the wealth in top per-
centiles to stock market returns tends to build over time (especially for the top 400). As discussed
in the main text, my interpretation is that the data on top wealth inequality is not very precise

54One outlier is the Forbes 400, where I observe lower estimates. This deviation appears to be linked to a spike in
cross-sectional variance just before the tech bubble burst, a period marked by lower excess returns. This seems to be
a byproduct of the limited time frame of the data, as Appendix B.3 shows that the reaction of Forbes 400 is driven
by changes in the average wealth in the top rather than by the arrival of new fortunes at the top (which is what the
cross-sectional variance is supposed to control for).
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(average of data sources over a year rather than at a point in time), and that private assets may
take time to response to changes in valuation.

An alternative reason might be that excess stock market returns themselves are correlated: in
this case, impulse response functions estimated by local projections measure both the effect of
the current shock in the treatment and the effect of the current shock on future treatments. As
discussed in Alloza et al. (2020), one way to isolate the first effect is to add future treatments as
controls in the local projection specification; that is,

log
✓Wp,t+h

Wp,t�1

◆
� (h + 1) log R f ,t = ah +

h

Â
i=0

bh,i
�
log RM,t+i � log R f ,t+i

�
+ ep,t,t+h,

log
✓Sp,t+h

Sp,t�1

◆
= ap,h +

h

Â
i=0

bh,i
�
log RM,t+i � log R f ,t+i

�
+ ep,t+h.

(44)

Table B2 reports the result for h = 3. One can see that the coefficient on contemporaneous excess
stock returns are similar to the ones obtained in the baseline specifications (Table 1). The reason is
that excess stock returns are not significantly correlated over time, and so there is little difference
in controlling for future excess stock returns or not.

Finally, note that while some amount of mispecification in my local projection specifications
is inevitable (excess stock market returns are very close, but not exactly the same as, unexpected
stock market returns), these estimates are still informative as long as I use the exact same specifi-
cation when comparing the model to the data (which I do in Appendix Figures D5 and D6).

B.2 Alternative data sources

Alternative series on top wealth shares. Due to data limitation, there is substantial uncertainty
about the historical evolution of top wealth shares. In my baseline results, I focus on the up-
dated series of top wealth shares constructed by Saez and Zucman (2016) (2022 vintage), which
improves on the series released at time of publication by incorporating several methodological
improvements described in Saez and Zucman (2020) and Saez and Zucman (2022).

There are two major alternative series for top wealth shares available in the literature. The first
alternative is the series constructed from income tax returns by Smith et al. (2023) from 1966 to
2016. While this series initially disagreed with Saez and Zucman (2016), subsequent updates in
both series largely reconciled these difference, leaving only some discrepancies for the top 0.01%.
The second alternative is the series constructed from estate tax returns by Kopczuk and Saez (2004)
from 1916 to 2000. This series estimates the living’s wealth distribution from the deceased’s wealth
distribution using the mortality multiplier technique, which amounts to weighting each estate tax
return by the inverse probability of death (depending on age and gender). One concern with this
methodology is that the evolution of death rates at the top may have diverged from the rest of
the population. I refer the reader to Saez and Zucman (2020), Smith et al. (2023), and Saez and
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Table B2: Exposure to stock market returns after controlling for future excess returns

Top 100% Top 1% Top 0.1% Top 0.01% Top 400

(1) (2) (3) (4) (5)

Panel A: Average wealth
Excess returns 0.48⇤⇤⇤ 0.62⇤⇤⇤ 0.70⇤⇤⇤ 0.86⇤⇤⇤ 1.04⇤⇤⇤

(0.09) (0.09) (0.10) (0.14) (0.14)
Excess returns (1y lead) 0.39⇤⇤⇤ 0.50⇤⇤⇤ 0.60⇤⇤⇤ 0.77⇤⇤⇤ 0.87⇤⇤⇤

(0.10) (0.09) (0.09) (0.12) (0.12)
Excess returns (2y lead) 0.40⇤⇤⇤ 0.57⇤⇤⇤ 0.66⇤⇤⇤ 0.75⇤⇤⇤ 0.60⇤⇤⇤

(0.09) (0.09) (0.10) (0.14) (0.10)
Excess returns (3y lead) 0.12 0.19⇤⇤ 0.25⇤⇤ 0.29⇤⇤ 0.36⇤⇤

(0.08) (0.09) (0.11) (0.14) (0.16)
Adjusted R2 0.44 0.62 0.61 0.54 0.73
N 103 103 103 103 31

Panel B: Wealth share
Excess returns 0.13⇤⇤⇤ 0.22⇤⇤⇤ 0.38⇤⇤⇤ 0.61⇤⇤⇤

(0.04) (0.08) (0.12) (0.20)
Excess returns (1y lead) 0.11⇤⇤⇤ 0.21⇤⇤⇤ 0.38⇤⇤⇤ 0.46⇤⇤⇤

(0.04) (0.07) (0.11) (0.16)
Excess returns (2y lead) 0.17⇤⇤⇤ 0.26⇤⇤⇤ 0.34⇤⇤⇤ 0.30⇤⇤

(0.04) (0.08) (0.12) (0.12)
Excess returns (3y lead) 0.07 0.13 0.18 0.13

(0.04) (0.08) (0.13) (0.13)
Adjusted R2 0.21 0.17 0.18 0.39
N 103 103 103 31

Notes: This table reports the coefficients obtained in the regression of the four-year growth of the average wealth in top percentiles on
excess stock returns controlling for future excess stock returns; that is, equation (44) with h = 3. Estimation is done via OLS. Standard
errors are in parentheses and are estimated using heteroskedasticity consistent standard errors. ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at the
10%, 5%, 1% levels, respectively.

Zucman (2022) for a more thorough discussion of the difference between these three series. Figure
B1 compares the evolution of top wealth shares across the tree series.
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Figure B1: Alternative series for top wealth shares
Notes: The figure plots three alternative series for top wealth shares. The label “PZZ” denotes the series from Saez and Zucman (2016)

(2022 vintage), used for my baseline results. The label “SZZ” denotes the series from Smith et al. (2023) while the label “KZ” denotes
the series from Kopczuk and Saez (2004), both versions corresponding to the ones at publication dates.
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To assess the extent to which my results depends on the data source for top wealth shares, I
re-estimate the baseline specification (1) with h = 3 using these two alternative series.For the sake
of comparison, it is important to hold the time sample constant across these exercises; hence, I
replace the dependent variable (the four-year growth of the average wealth in each top percentile)
by the one from Saez and Zucman (2016) in years in which they are missing (i.e., pre-1966 Smith
et al. (2023) and post-2000 for Kopczuk and Saez (2004)).

Panel A of Table B3 reports the results using the series from Smith et al. (2023) while Panel B
reports the results using the series from Kopczuk and Saez (2004). Overall, I find that the three
main data series on top wealth inequality give similar results for the response of top percentiles to
stock market returns. In particular, the elasticity for the top 0.01% is 0.80 using the data from Smith
et al. (2023) and 0.72 using the data from Kopczuk and Saez (2004), which are close to the baseline
estimate 0.78 obtained using the data from Saez and Zucman (2016) (Table 1). To economize on
space, I do not report the corresponding estimates obtained for the growth of top wealth shares:
as discussed in Section 2.2, they can simply be obtained by subtracting the elasticity of the average
wealth in each percentile by the elasticity of the average wealth in the economy (which is the same
across data sources). These results suggest that, while the three series of top wealth shares have
different implications for the low-frequency fluctuations of top wealth shares, they largely agree
on the response of top wealth shares to excess stock market returns.

Table B3: Exposure to stock market returns using alternative series for top wealth shares

Top 100% Top 1% Top 0.1% Top 0.01%

(1) (2) (3) (4)

Panel A: Wealth data from Smith et al. (2023)

Excess returns 0.43⇤⇤⇤ 0.55⇤⇤⇤ 0.64⇤⇤⇤ 0.80⇤⇤⇤
(0.11) (0.12) (0.14) (0.18)

Adjusted R2 0.16 0.20 0.19 0.19
Time sample 1914-2016 1914-2016 1914-2016 1914-2016
N 103 103 103 103

Panel A: Wealth data from Kopczuk and Saez (2004)

Excess returns 0.43⇤⇤⇤ 0.60⇤⇤⇤ 0.67⇤⇤⇤ 0.72⇤⇤⇤
(0.11) (0.14) (0.15) (0.17)

Adjusted R2 0.16 0.22 0.24 0.20
Time sample 1914-2016 1914-2016 1914-2016 1914-2016
N 103 103 103 103

Notes: This table reports the coefficients obtained in the regression of the four-year growth of the average wealth in top percentiles
on excess stock returns; that is, equation (1) with h = 3 using data from Smith et al. (2023) (Panel A) and from Kopczuk and Saez
(2004) (Panel B). Estimation is done via OLS. Standard errors are in parentheses and are estimated using heteroskedasticity consistent
standard errors. ⇤,⇤⇤ ,⇤⇤⇤ indicate significance at the 10%, 5%, 1% levels, respectively.

Evidence from portfolio holdings. One additional data source on the wealth distribution is the
Survey of Consumer Finances (SCF). I now show that the estimates for the equity exposure of
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different top percentiles, as reported in Table 1, line up with the share of wealth invested in equity
in different top percentiles, as reported in the SCF.55

Figure B2a plots the average equity share within percentile bins across the wealth distribu-
tion, where the equity share is defined as the total investment in equity over financial wealth, as
reported in the SCF. The equity share is essentially flat at 0.2 over the majority of the wealth distri-
bution, but increases sharply within the top 1%. Figure B2b plots the equity share with respect to
the log top percentiles, showing that the equity share is approximately linear in the log percentile
at the top of the distribution.
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Figure B2: Equity share across the wealth distribution
Notes: Figure B2a plots the average equity share within 20 linearly spaced percentile bins in the wealth distribution. Figure B2b plots

the average equity share within 20 logarithmically spaced percentile bins in the wealth distribution. The horizontal line represents the
wealth-weighted average equity share in the economy. The equity share is defined as the sum of private and public equity divided by
networth: (equity + bus) / net worth. Data from SCF 1989-2019.

The first row of Table B4 returns the wealth-weighted average equity share in all top per-
centiles. The key observation is that these equity shares line up almost perfectly with the response
of the average wealth in top percentiles to stock market returns, as reported in Table 1: for instance,
the average equity share in the top 0.01% is 0.75 (last column of Table B4), which is consistent with
the fact that a 1% excess stock market return increases the average wealth in the top 0.01% by
0.78% on average (last column of Table 1). Table B4 also decomposes the equity share into several
subcomponents, revealing that the increase in the average equity share across the wealth distribu-
tion is mostly driven by an increase in the share of wealth invested in private equity, consistently
with the model discussed in Section 3.

The second to last row of the table reports the fraction of entrepreneurs in each top percentile,
where an entrepreneur is defined as a household investing more than half of their wealth in equity.
The last row reports the fraction of income in each percentile that takes the form of labor income.

55The survey is a repeated cross-section of about 4,000 households per survey year, including a high-wealth sample.
The survey is conducted every three years, from 1989 to 2019. The respondents provide information on their financial
wealth, including their investments in public and private equity.
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Table B4: Average equity share in top percentiles

Top percentiles

Top 100% Top 1% Top 0.1% Top 0.01%

Equity share 0.42 0.61 0.68 0.75
Public equity 0.21 0.23 0.21 0.19

Directly held 0.12 0.16 0.17 0.16
Indirectly held 0.09 0.06 0.04 0.03

Private equity 0.21 0.38 0.47 0.56
Actively managed 0.18 0.33 0.40 0.47
Non actively managed 0.02 0.05 0.07 0.09

Proportion of entrepreneurs 0.09 0.18 0.16 0.14
Labor income / Total income 0.68 0.34 0.23 0.14

Notes: The equity share is defined as the sum of private and public equity divided by networth: (equity + bus) / networth. “En-
trepreneurs” are define as households investing more than half of their wealth in equity. The share of labor income in total income is
defined as wageinc/income. Data from SCF 1989-2019.

B.3 Accounting for composition changes

The growth of the average wealth in a top percentile can always be decomposed into two terms:
an intensive term that captures the wealth growth of households initially in the top percentile
(whether or not they remain in the top percentile by the end of the period) and an extensive term
that captures the effect of composition changes on the average wealth in the top percentile (due to
idiosyncratic shocks and demographic forces).

Following Gomez (2023), I decompose the growth of the average wealth in the top 400 into
these two terms. More precisely, I construct the intensive term as

Intensive termt ⌘ log

 
Âi2Pt�1\Dt Wi,t

Âi2Pt�1\Dt Wi,t�1

!
,

where Pt�1 \ Dt denotes the set of individuals in the top 400 at time t � 1 who do not die between
t � 1 and t. I then obtain the extensive term as a residual; that is, as the difference between the
logarithmic growth of top wealth shares and the intensive term:56

Extensive termt ⌘ log
✓

Wp,t

Wp,t�1

◆
� Intensive termt.

I then estimate the baseline specification (1) after replacing the dependent variable by each of these

56Gomez (2023) further decomposes this extensive term into a between and demography terms, which correspond,
respectively, to the effect of idiosyncratic shocks and demographic forces.
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two terms; that is,

Â
tst+h

Intensive terms � (h + 1) log R f ,t = aintensive
p,h + bintensive

p,h (log RM,t � log R f ,t) + eintensive
p,t+h ,

Â
tst+h

Extensive terms = aextensive
p,h + bextensive

p,h (log RM,t � log R f ,t) + eextensive
p,t+h .

(45)

Note that, because these regressions are univariate, the “intensive” and “extensive” coefficients
exactly sum up to the coefficients obtained for the total growth in the average wealth in Forbes
400; that is, bintensive

p,h + bextensive
p,h = bp,h.

Figure B3 plots the resulting estimates for bintensive
p,h and bextensive

p,h for 0  h  8 as well as
their 95% confidence intervals. I find that almost all of the response in the growth of the average
wealth in the top 400 is due to change in the wealth of agents initially in the top (“intensive” term),
rather than changes in composition effects (“extensive” term). Note that this is consistent with the
model discussed in Section 3, in which the larger response of the average wealth in top percentiles
to stock market returns is driven by the larger wealth exposure of individuals in the top percentile.

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

1.5

Horizon (Year)

Intensive
Extensive

Figure B3: Decomposing the response of the average wealth in the top 400
Notes: The figure reports the estimates for bintensive

p,h and bextensive
p,h from the regression model (45) for 0  h  8 as well as their 5%–95%

confidence intervals using heteroskedasticity consistent standard errors. At each horizon 0  h  8, the intensive and extensive
estimates sum up exactly to the coefficients plotted in Figure 1e; that is, bintensive

p,h + bextensive
p,h = bp,h.

C Appendix for Section 3

C.1 Solving the model

I now describe how I solve the model step by step, by rewriting the equilibrium as an ODE on c.
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Step 1. I first express p and its derivatives in terms of c and its derivatives. Market clearing for
goods (8) gives

p(x) =
1

xrE + (1 � x)ryc(x)1�y
.

Differentiating with respect to x gives

∂x p(x) = �p(x)2
⇣

rE � ryc(x)1�y + (1 � x)ry(1 � y)c(x)�y∂xc(x)
⌘

.

Differentiating a second time gives

∂xx p(x) = p(x)2
✓

2p(x)
⇣

rE � ryc(x)1�y + (1 � x)ry(1 � y)c(x)�y∂xc(x)
⌘2

+ 2ry(1 � y)c(x)�y∂xc(x)

+(1 � x)ry(1 � y)p(x)
⇣

c(x)�y∂xxc(x)� yc(x)�y�1(∂xc(x))2
⌘⌘

.

Step 2. I then express the volatility of the state variable in terms of the p and its derivatives.
Combining Ito’s lemma with Proposition 1 gives

sx(x) = x(aE(x)� 1)
✓

s +
∂x p(x)

p(x)
sx(x)

◆

=) sx(x) =
x(aE(x)� 1)s

1 � x(aE(x)� 1) ∂x p(x)
p(x)

.

where aE(x) = min
�
aE, 1

x
�
. This equation reflects the feedback loop discussed in (25). This can be

used to express the volatility of c and p using Ito’s lemma:

sc(x) =
∂xc(x)
c(x)

sx(x)

sp(x) =
∂x p(x)

p(x)
sx(x).

Moreover, market clearing for the risky asset (9) gives an expression for (µR � r)(x):

1 = xtaE(x) + (1 � x)
✓

1
g

(µR � r)(x)
sR(x)2 +

1 � g

g

sc(x)
sR(x)

◆

=) (µR � r)(x) =
1 � xaE(x)

1 � x
gsR(x)2 + (g � 1)sc(x)sR(x), (46)

where sR(x) = s + sp(x).
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Step 3. I then obtain the drift of the state variable µx(x) from Proposition 1, which allows me to
obtain the drift of c and p using Ito’s lemma:

µc(x) =
∂xc(x)
c(x)

µx(x) +
1
2

∂xxc(x)
c(x)

sx(x)2,

µp(x) =
∂x p(x)

p(x)
µx(x) +

1
2

∂xx p(x)
p(x)

sx(x)2.

Finally, subtracting the expression for (µR � r)(x) in (46) from the expression for µR(x) in (4) gives
an expression for r(x).

Step 4. Plugging all of these quantities into the household’s HJB equation (11) gives the ODE for
the function c. I solve the ODE using an accelerated finite difference method. Formally, I solve for
� = [c1, . . . , cN ], a vector of length N corresponding to the value of the function c on a discretized
grid between 0 and 1.

Denote F(�) the finite difference scheme corresponding to a model, where the solution satisfies
F(�) = 0. I solve for � using an iteration method. I start from an initial guess �0 = [1, . . . , 1] and
then iterates using the equation:

0 = F(�i+1)�
�i+1 ��i

D
. (47)

Each update requires solving a non-linear equation (it corresponds to a fully implicit Euler method).
Economically, it is equivalent to solve for the value function today given the value function in D
time. I solve this non-linear equation using a Newton-Raphson method. The Newton-Raphson
method converges if the initial guess is close enough to the solution. Since �i converges towards
�i+1 as D tends to zero, one can always choose D low enough so that the inner steps converge.
Therefore, I adjust D as follows. If the inner iteration does not converge, I decrease D. If the
inner iteration converges, I increase D. After a few successful implicit time steps, D is large and,
therefore the algorithm becomes like Newton-Raphson. In particular, the convergence is quadratic
around the solution. I stop the iteration as soon as F(�i) is small enough.

This method corresponds to a method used in the fluid dynamics literature, called the Pseudo-
Transient Continuation method. The algorithm with only one inner iteration and D constant corre-
sponds to Achdou et al. (2022) (it corresponds to an semi-implicit Euler method). I find that allow-
ing multiple inner iterations and adjusting D dynamically are important to ensure convergence of
this non-linear PDE. This solution method is useful to solve other asset pricing models globally. I
uploaded it as an online package for Julia https://github.com/matthieugomez/EconPDEs.jl
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C.2 Stability of linear functionals

This section states and proves a lemma for linear functionals which is used in the proof of Propo-
sition 2.

Lemma 1. Let xt 2 R be a continuous-time strong Markov process non-explosive, irreducible, positive
recurrent with unique invariant probability measure. Denote P (resp. E) denotes the probability measure
(resp. expectation) with respect to the invariant probability measure of x. Consider the process

dMt =
⇣

µ(xt)Mt + b(xt)
⌘

dt + s(xt)Mt dZt, (48)

where P(b(x) � 0) = 1, P(b(x) > 0) > 0, and µ and s are integrable with respect to the invariant
probability measure. Then, we have:

(i) If E[µ(x)� 1
2 s(x)2] > 0, Mt converges to infinity a.s.

(ii) If E[µ(x)� 1
2 s(x)2] < 0, Mt does not converge to infinity a.s.

Proof. While this result is well known in the discrete-time case (e.g. Vervaat, 1979), I could not
find a similar proof in the continuous-time case. I do the proof in two steps: I first bound the
continuous-time process Mt by a discrete time process, as in Maruyama and Tanaka (1959). I then
apply results from Vervaat (1979) to characterize the limit of this discrete time process.
Step 1. For t > 0, we have the following recurrence equation:

Mt+t = e
R t+t

t (µ(xu)� 1
2 s(xu)2) du+

R t+t
t s(xu)dZu Mt +

Z t+t

t
e
R t+t

s (µ(xu)� 1
2 s(xu)2) du+

R t+t
s s(xu)dZu b(xs)ds.

Denote I the set of values that xt can take. Take a < b, both in I. Define the sequence of stopping
times S0 = 0 and

Tn ⌘ inf{t > Sn; xt = a},

Sn+1 ⌘ inf{t > Tn; xt = b}.

Define, for any n � 0,

Xn ⌘ MTn ,

An ⌘ e
R Tn+1

Tn (µ(xu)� 1
2 s(xu)2)du+

R Tn+1
Tn s(xu)dZu ,

Bn ⌘
Z Tn+1

Tn

e
R Tn+1

s (µ(xu)� 1
2 s(xu)2)du+

R Tn+1
s s(xu)dZu b(xs)ds.

Note that Xn bounds the continuous time process Mt: for t 2 (Tn, Tn+1], Xn  Mt  Xn+1. In
particular, Mt converges to infinity a.s. if and only if Xn converges to infinity a.s.
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Step 2. The sequence Xn satisfies the following recurrence relation:

Xn+1 = AnXn + Bn,

where An and Bn are i.i.d over time. Moreover, A1 is positive a.s., B1 is non negative a.s. with
P(B1 > 0) > 0 and E[log B1] < •. As proven by Vervaat (1979), Xn converges in distribu-
tion if E[log A1] < 0 (i.e. if E

hR T2
T1

�
µ(xu)� 1

2 s(xu)2�du
i
� 0), and converges a.s. to infinity

if E[log A1] > 0. Finally, as shown in Maruyama and Tanaka (1959), any integrable function f ,
E
hR T2

T1
f (xu)du

i
� 0 iff E [ f (x)] � 0. This gives the result.

C.3 An analytical formula for the average wealth above a threshold

This following result, which is a corollary of Proposition 2, derives an analytical expression for the
average (normalized) wealth above a threshold.

Corollary 1. We have, for q 2 R,

Et
⇥
wit1wit�q|i 2 Ijt

⇤
=
Z t

�•
(h + d)e�(h+d)(t�s)eµj,s�t+

1
2 n2

j,s�t

✓
1 � F

✓ log q � µj,s�t

nj,s�t
� nj,s�t

◆◆
ds.

where F(·), µj,s�t and nj,s�t are defined in Proposition 2.

Proof. Using the law of iterated expectations, we have:

Et
⇥
wit1wit�q|i 2 Ijt

⇤
=
Z t

�•
(h + d)e�(h+d)(t�s)Et

⇥
wit1wit�w|ait = t � s, i 2 Ijt

⇤
ds, (49)

where ait denotes the age of individual i at time t. We know from the proof of Proposition 2 that,
within each cohort, log wealth is normally distributed with mean µj,s�t and standard deviation
nj,s�t. To conclude the proof, it is enough to show that E

⇥
eZ1Z�z

⇤
= eµ+ 1

2 n2
⇣

1 � F
⇣

z�µ
n � n

⌘⌘
for

a Gaussian random variable Z with mean µ and standard deviation n. Indeed, we have

E
h
eZ1Z�z

i
=
Z •

z
eu 1p

2pn2
e�

1
2
(u�µ)2

n2 du

=
Z •

(z�µ)/n
e(µ+nv) 1p

2p
e�

1
2 v2

dv (using the change of variable v = (u � µ)/n)

= eµ+ 1
2 n2
Z •

(z�µ)/n

1p
2p

e�
1
2 (v�n)2

dv

= eµ+ 1
2 n2
Z •

(z�µ)/n�n

1p
2p

e�
1
2 y2

dy (using the change of variable y = v � n)

= eµ+ 1
2 n2
✓

1 � F
✓

z � µ

n
� n

◆◆
.

59



C.4 Distinguishing between labor and capital income

All income in the model is produced by trees. As a result, the concept of wealth in the model
(the capitalized value of all income produced by trees) encompasses both financial wealth (the
capitalized value of capital income) and human capital (the capitalized value of labor income). In
the data, however, we only observe financial wealth (as human capital is not traded). I now argue
that the distinction between the two does not matter for two key moments used in Section 4 to
calibrate the model: the elasticity of top percentiles to stock market returns and the tail index of
the wealth distribution. I examine this point in two contexts: firstly in relation to the actual wealth
distribution observed in the U.S., and secondly within the framework of the model.

In the data. Let Ap,t represent the average financial wealth and Hp,t the average human capital
in the top percentile p at time t. Denote wp ⌘ E[Hp,t/(Ap,t + Hp,t)] the average ratio of human
capital to total wealth in the top percentile p. The growth of total wealth between two periods
can be written as a weighted average of the growth of financial assets and the growth of human
capital:

log
✓

At+1 + Ht+1

At + Ht

◆
⇡ wp log

✓Ap,t+1

Ap,t

◆
+ (1 � wp) log

✓Hp,t+1

Hp,t

◆
. (50)

Projecting this approximation on stock returns (as in specification 1) gives

bA+H,p ⇡ (1 � wp)bA,p + wpbH,p

=) bA+H,p � bA,p ⇡ wp(bH,p � bA,p).

This equation says that the difference between the exposure of total wealth, bA+H,p, and the ex-
posure of financial wealth, bA,p (i.e. the bias in inferring the exposure of total wealth from the
exposure of financial wealth) is the product of (i) the share of human capital in total wealth wp (ii)
the difference between the exposure of human capital and financial wealth bH,p � bA,p.

This suggests that the difference between the exposure of total wealth and the financial wealth
bA+H,p � bA,p is likely to be small for agents at the top of the wealth distribution (e.g. p = 0.01%)
since limp!0 wp = 0. For instance, the IRS reports that labor income represents 13.2% of total
income for the top 400 tax returns the U.S. on average from 1992 to 2014 (see Appendix Table D5).
Assuming the same capitalization rate for human capital and financial assets, this suggests that
human capital represents one tenth of total wealth for agents at the top of the wealth distribution;
that is wp ⇡ 13.2%.57

This equation also suggests that the difference between the exposure of total wealth and the
financial wealth bA+H,p � bA,p is likely to be small for the average household in the economy
(p = 100%) as bH,p ⇡ bA,p. Indeed, at the aggregate level, labor and capital income are co-

57Similarly, Appendix Table B4 reports that the share of labor income in the top 0.01% is 14% using data from the
Survey of Consumer Finances.
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integrated, which implies that their permanent response to aggregate shocks must be equal. In
conclusion, this discussion suggests that the risk exposure of the financial wealth of agents in
percentile p is a good approximation for the exposure their total wealth, for p close to zero or
p close to one.

Similarly, the distinction between “total wealth” and “financial wealth” does not matter for the
tail index of the wealth distribution either, as, empirically, most of the wealth in the top takes the
form of observable financial wealth (e.g. firm ownership) rather than unobserved human capital.

In the model. I now present a simple way to incorporate the distinction between labor and
capital income in the model. I derive a condition under which the wealth of agents in the right tail
of the wealth distribution takes the form of financial wealth rather than human capital (as in the
data). Under this condition, the distinction between human capital and financial wealth does not
matter for the elasticity of top percentiles to stock market returns and the tail index of the wealth
distribution, as in the data.

Formally, I assume that a portion c of initial wealth endowed to an individual at birth takes
the form of human capital (i.e. trees giving labor income). I assume that this income grows at
rate d � f relative to the economy and disappears when the individual die, so that this income
on average depreciates at rate f relative to the economy. Hence, both capital and labor income
grow at the same rate on average. As a result, all trees have the same market value-to-income
ratio. All the equations in the model are unchanged, as the consumption and portfolio decision
only depend on total wealth. In particular, this distinction between labor and capital income does
not affect asset prices.

What does the distribution of financial wealth look like in this model? As shown in Proposition
3, the distribution of “total” wealth is Pareto with tail index min(zH, zE). In contrast, one can show
that human capital is distributed with a Pareto tail with tail index (d + h)/(d � f) if d > f, or +•
d < f.58 As a result, financial wealth, which is the difference between total wealth and human
capital, inherits the Pareto tail of total wealth as long as min(zH, zE)  (d + h)/(d � f). This
condition is satisfied whenever the growth rate of the type of agents making it to the right tail of
the wealth distribution is higher than the growth rate of their labor income. When this condition
holds (which is the case in the calibrated version of the model), the ratio of human capital to
total wealth tends to zero in the right tail of the wealth distribution, and so, as in the data, the
distinction between total wealth and financial wealth does not matter for the tail index of the
wealth distribution or for the elasticity of top wealth shares to stock market returns.

58To see why, note that human capital at time t of an agent with age ait is ce(d�f)ait wi,t�ait . Because age is exponen-
tially distributed with rate parameter h + d, e(d�f)ait is Pareto distributed with tail index (h + d)/(d � f).
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D Appendix for Section 4

D.1 Additional evidence on the consumption rate at the top

In the main text, I pick the consumption rate of entrepreneurs rE to match the tail index of the
wealth distribution z. As discussed in Section 4.1, this calibration can be decomposed into two
steps. In the first step, I use the formula for the tail index given obtained in Proposition 3, together
with the values of (z, n, d, h), to infer a value for the average growth rate of households in top per-
centiles relative to the economy. In the second step, I use the fact that this latter quantity equals the
average log return of entrepreneurs minus their consumption rates minus the average log growth
rate of the average wealth in the economy. Estimating the log return of entrepreneurs and the
growth rate of the economy separately allows me to obtain an implied value for the consumption
rate of entrepreneurs (as a residual).

I now discuss an alternative calibration that focuses on estimating the consumption rate of
entrepreneurs in Forbes 400. The key advantage of focusing on Forbes 400 is that, due to its panel
dimension, I can directly measure the growth rate of households initially in the top 400 (instead of
backing it out from the tail index of the wealth distribution z). I can then use data on asset returns
(as well as some data on wages received and taxes paid by the Top 400) to obtain an implied value
for the consumption of entrepreneurs as a fraction of their financial wealth. The disadvantage
of this method is that the consumption rate of top entrepreneurs from 1982 to 2017 may not be
representative of their average consumption rate over the 20th century (indeed, that time period
coincides with a steep increase in top wealth inequality).

The advantage of this method, relative to the one in the main text, is that it is more direct, as
one can directly measure the average wealth growth of top households relative to the economy
using panel data. Its disadvantage, however, is that the data from Forbes 400 only covers a very
particular time, where top wealth shares increase dramatically (which may potentially reflect a
steep decrease in the average consumption rate of top entrepreneurs over that period).

I now formalize this alternative methodology. I start from the following “model-free” budget
constraint for the financial wealth of households in the top percentile between year t and year t+ 1

Wt+1 = Rt+1
�
Wt + Yt+1 � Tt+1 � Ct+1

�
,

where Wt (resp. Wt+1) denotes the average financial wealth of these households at the end of year
t (resp. at the end of year t + 1), Rt+1 denotes their wealth-weighted average portfolio returns
in year t + 1, Yt+1 their average labor income, Tt+1 their average taxes and Ct+1 their average
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consumption. Taking logs and rearranging:

log

 
Wt+1

Wt

!
= log Rt+1 + log

 
1 +

Yt+1 � Tt+1 � Ct+1

Wt

!

⇡ log Rt+1 +
Yt+1

Wt
� Tt+1

Wt
� Ct+1

Wt
. (51)

where the second line is valid at the first-order in (Yt+1 � Tt+1 � Ct+1)/Wt (which is indeed small
at the annual frequency). I then estimate the log average return log Rt+1 as

log Rt+1 ⌘ log R f ,t+1 + bTop400
�
log RM,t+1 � log R f ,t+1

�
,

where bTop400 = 0.98 was estimated via (1). I estimate the average labor income and taxes paid
using IRS tabulations on the top 400 income tax returns (ranked by Adjustable Gross Income) from
1992 to 2014.59 I then obtain the consumption rate Ct+1/Wt as a residual.

Table D5 reports the results. The average annual wealth growth of households in Forbes 400
over the 1982-2017 time period is 5.1% (in real term); their average log annual return is 7.6% (in real
terms); their average labor income represents 0.7% of their financial wealth; while their average
taxes represent �1.2% of their financial wealth. Using Equation (51), this implies that their annual
consumption represents approximately 2% of their financial wealth. Interestingly, this value ends
up being very similar to the value of rE required to match the tail index of the wealth distribution
in Section 4.1, which gave rE = 2.2%.

Table D5: Estimating the annual consumption rate in the Top 400

Average wealth growth =Portfolio return +Labor income �Taxes �Consumption

5.1 7.6 0.7 -1.2 -2.0

Notes: The table reports the average, over the 1982-2017 period, of each term given in Equation (51) (all in percentage term). More
precisely, the first column corresponds to log

�
Wt+1/Wt

�
, the second column corresponds to log Rt+1, the third column to Yt+1/Wt,

the fourth column to �Tt+1/Wt, and the last column to the residual �Ct+1/Wt.

D.2 Stochastic derivative

Decay rate of IIRF. As discussed in Section 4.2, the law of motion of the stochastic derivative of
the process (xt)t2R is

✓
d

∂xt+h
∂xt

◆.✓∂xt+h
∂xt

◆
= ∂xµx(xt+h)dh + ∂xsx(xt+h)dZt+h.

59See https://www.irs.gov/pub/irs-soi/14intop400.pdf.
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Using the terminology of Hansen and Scheinkman (2009), the stochastic derivative of the process
(xt)t2R is a multiplicative functional, and, as such, it can be written as the product of three terms:

∂xt

∂x0
= e�kt f(x0)

f(xt)
M̂t, (52)

where M̂t is a local martingale and (f,�k) denote, respectively, the principal eigenvector and
eigenvalue of the operator:

T : g ! lim
h!0

1
h

✓
E


∂xh
∂x0

g(xh)|x0 = x
�
� g(x)

◆
. (53)

Plugging the decomposition (52) into the definition for the IIRF (21) gives:

IIRFg(x, h) = E


∂xh
∂x0

∂xg(xh)
���x0 = x

�
= e�khf(x0)E


M̂h

∂xg(xh)
f(xh)

���x0 = x
�

.

This implies that IIRFg(x, h) decays with the horizon h at an exponential rate rate k. Note that
this decay rate does not depend on the initial state x nor on the function g(·).60 After computing
numerically k as the (opposite) of the principal eigenvalue of the operator T defined in (52), I
obtain k ⇡ 0.05.

A generalization of Feynman-Kac formula. The following lemma, which is a generalization of
the Feyman-Kac formula, provides a way to compute analytically a large class of expectations
involving the stochastic derivative ∂xt/∂x0. In particular, I use it to compute analytically the IIRF
defined in (21), the Campbell-Shiller decomposition in Proposition 4, and the impulse response of
entrepreneurs’ wealth in Proposition 5.

Lemma 2. Given a set of smooth functions f , g, v, the function

u(x, h) ⌘ E
Z h

0
e�
R t

0 v(s)ds ∂xt

∂x0
f (xt)dt + e�

R h
0 v(s)ds ∂xh

∂x0
g(xh)

���x0 = x
�

(54)

can be computed numerically as the solution of the linear PDE

∂hu(x, h) = f (x)+
⇣

∂xµx(x)� v(x)
⌘

u(x, h)+
⇣

µx(x)+sx(x)∂xsx(x)
⌘

∂xu(x, h)+
1
2

s2
x(x)∂xxu(x, h)

(55)
with initial boundary condition u(x, 0) = g(x).

Proof. Equation (54) implies the following recurrence relation for 0 < t < h

u(x, h) = E
Z t

0
e�
R t

0 v(s)ds ∂xt

∂x0
f (xt)dt + e�

R t
0 v(s)ds ∂xt

∂x0
u(xt, h � t)

���x0 = x
�

.

60One could show that k also corresponds to the second largest eigenvalue of the infinitesimal generator associated
with the process (xt)t2R .

64



Subtracting by u(x, h) on each side, dividing by t, and passing to the limit t ! 0 gives:

0 = f (x) + lim
t!0

1
t

E


e�
R t

0 v(s)ds ∂xt

∂x0
u(xt, h � t)� u(x, h)

���x0 = x
�

.

Applying Ito’s lemma together with the law of motion of ∂xt/∂x0 (22) implies that u solves the
following PDE

0 = f (x) +
⇣

∂xµx(x)� v(x)
⌘

u(x) +
⇣

µx(x) + sx(x)∂xsx(x)
⌘

∂xu(x) +
1
2

s2
x(x)∂xxu(x)� ∂hu(x, h).

The initial boundary condition can be obtained by taking (54) with h = 0.

I now briefly discuss how to solve this linear PDE using a finite difference method. Consider
an homogeneous discretized grid for x; that is x ⌘ (iDx)0iN�1, with (N � 1)Dx = 1. Define T

the N ⇥ N matrix that corresponds to the discretized version of the operator defined in (53):

T : u ! lim
h!0

1
h

✓
E


∂xh
∂x0

u(xh)|x0 = x
�
� u(x)

◆
= (∂xµx)u +

⇣
µx + sx∂xsx

⌘
∂xu +

1
2

s2
x ∂xxu.

More precisely, for any vector u = (ui)1iN , the vector Tu is a vector with ith component:

(Tu)i = ∂xµx(xi)ui

+
⇣

µx(xi) + sx(xi)∂xsx(xi)
⌘✓

1µx(xi)�0
ui+1 � ui

Dx
+ 1µx(xi)0

ui � ui�1

Dx

◆

+
1
2

s2
x(xi)

✓
ui+1 + ui�1 � 2ui

Dx

◆
,

for 0  i  N � 1. Consider a discretized time grid (jDh)0jT. Consistently with the initial condi-
tion u(x, 0) = g(x), I set u0, the discretized version of u(·, 0) on the grid x, to u0 = (g(xi))0iN�1.
I then proceed by recurrence: given uj, the discretized version of u(·, jDh) on the grid x, I obtain
uj+1, the discretized version of u(·, (j + 1)Dh) on the grid x, by solving the linear system

uj+1 � uj

Dh
= f + (T � Diag(v))uj+1,

where f = ( f (xi))0iN�1 and v = (v(xi))0iN�1 denote the discretized versions of the functions
f and v on the grid x. Indeed, this equation corresponds to the PDE (55), discretized with respect
to the horizon h and with respect to the state variable x.
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D.3 Decomposing the response of the average wealth of surviving entrepreneurs

Remember the expression (30) obtained in the main text for the impulse response of the average
wealth of entrepreneur wealth:

e(x, h) = (aE � 1)s
| {z }

Due to the response
in asset income

+ (aE � 1)sp(x) + E
Z h

0

∂xt

∂x0
∂x

✓
µwE � 1

2
s2

wE

◆
(xt)dt

���x0 = x
�

sx(x)
| {z }

Due to the response
in asset valuation

.

The following proposition further decomposes the second term in this decomposition; that is, the
effect of changes in asset valuations on entrepreneurs’ wealth.

Proposition 6. The effect of changes in asset valuations (defined in (30)) can be decomposed into two terms:

(aE � 1)sp(x) + E
Z h

0

∂xt

∂x0
∂x

✓
µwE � 1

2
s2

wE

◆
(xt)dt

���x0 = x
�

sx(x)
| {z }

Effect of changes
in asset valuation

⇡ E

(aE � 1)

∂xh
∂x0

∂x log p(xh)
���x0 = x

�
sx(x)

| {z }
Revaluation effect > 0

+ E
Z h

0

∂xt

∂x0
∂x

✓
r + aE

✓
1
p
� rt

◆
� 1

2
aE(aE � 1)s2

R

◆
(xt)dt

���x0 = x
�

sx(x).
| {z }

Accumulation effect < 0

This proposition decomposes the effect of changes in asset valuations on the normalized wealth
of entrepreneurs into two terms. The “revaluation effect” corresponds to its (positive) effect on the
market value of assets owned by entrepreneurs while the “accumulation effect” corresponds to its
(negative) effect on the amount of assets that they accumulate. The fact that the second term is
negative reflects the fact that higher asset valuations mean that entrepreneurs receive less income
per unit of wealth. The approximation is obtained by neglecting the effect of aggregate shocks on
the equity exposure of entrepreneurs aE (which is accurate as aE remains constant over most of
the state space (6)).

Note that the accumulation effect is zero at h = 0 while the revaluation effect is zero as h ! •
(as valuation changes are purely transitory). Hence, the proposition implies the following expres-
sions for the short-run and long-run response of entrepreneurs’ wealth to an aggregate shock:

e(x, 0) = (aE � 1)s + (aE � 1)(∂x log p)sx(x)| {z }
Revaluation effect > 0

e(x, •) ⇡ (aE � 1)s + E
Z h

0

∂xt

∂x0
∂x

✓
r + aE

✓
1
p
� rt

◆
� 1

2
aE(aE � 1)s2

R

◆
(xt)dt

���x0 = x
�

sx(x).
| {z }

Accumulation effect < 0
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In other words, the endogenous response of asset valuations to aggregate shocks plays an ampli-
fying effect on entrepreneurs’ wealth in the short-run but a dampening effect in the longer-run.

Proof of Proposition 6. Using the expression for µwE and swE given in (14), we have:

µwE � 1
2

s2
wE

= r + aE

✓
1
p
+ g � f � 1

2
s2 + µp +

1
2

s2
p � r

◆
� 1

2
aE(aE � 1)s2

R � rE �
✓

g � 1
2

s2 + µP � 1
2

s2
p

◆
.

Plugging this formula into the expression for e(x, h) obtained in Proposition 5, we get:

e(x, h) = (aE � 1)(s + sp(x))

+ E
Z h

0

∂xt

∂xt
∂x

✓
r + aE

✓
1
p
� f � r

◆
� 1

2
aE(aE � 1)s2

R

◆
(xt)dt

���x0 = x
�

sx(x)

+ E
Z h

0

∂xt

∂xt
∂x

✓
(aE � 1)

✓
g � 1

2
s2 + µp �

1
2

s2
p

◆◆
(xt)dt

���x0 = x
�

sx(x).

(56)

Moreover, integrating forward Et [d log p(xt)] = µp(xt)� 1
2 sp(xt)2 gives

log p(x) = E
Z h

0

✓
µp �

1
2

s2
p

◆
(xs)dt

���x0 = x
�
+ E [log p(xt)|x0 = x] .

Differentiating with respect to x and multiplying by sx(x) gives

sp(x) = E
Z h

0

∂xt

∂x0

✓
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1
2

s2
p

◆
(xt)dt|x0 = x

�
sx(x) + E


∂xh
∂x0

∂x log p(xh)|x0 = x
�

sx(x).

Plugging this expression into (56) gives

e(x, h) = (aE(x)� 1)s + (aE(x)� 1)E
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◆
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✓
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(xt)dt|x0 = x

�
sx(x).

The third term becomes zero under the approximation aE ⇡ aE(x0), which gives the result.

D.4 Historical dynamics of top wealth shares in the model and in the data

In this paper, I have built a model that sheds light on the dynamics of asset prices and wealth
inequality in response to aggregate shocks. One interesting question is: how much of the actual
fluctuations in top wealth shares over the last hundred years can be explained by this mecha-
nism? To answer this question, I feed the sequence of aggregate shocks that generates the realized
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sequence of excess returns between 1913 and 2020 into the calibrated model.
Figure D4 compares the time series of top wealth shares implied by the model with the actual

realization of top wealth shares in the data (using data from Saez and Zucman, 2016), for p 2
{1%, 0.1%, 0.01%}. The model captures well business cycles fluctuations in top wealth inequality.
However, it misses the overall U-shape of top wealth shares over the 20th century (in particular,
the steep decline in the 40s and the steep increase starting in the 80s). To adjust for this low-
frequency fluctuations in top wealth inequality, I also compare the series of top wealth shares
implied by the calibrated model to a “detrended” version of realized top wealth shares, where
“detrended” means that the series is adjusted for the structural break in the growth of top wealth
shares.61 One can see that the two series remain very close over the time sample — in particular, it
is hard to know whether the remaining discrepancy reflects some other economic forces or simply
some measurement error in realized top wealth shares.62
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Figure D4: Historical dynamics of top wealth shares (model versus data)
Notes: The figure reports the time series of top wealth shares implied by the model after feeding it with the time series of aggregate

shocks generating the same realization of equity excess returns as in the data. The figure also reports the time series of realized top
wealth shares from Saez and Zucman (2016) as well as a detrended version after adjusting for the structural break in the logarithmic
growth of top wealth shares in 1979.

D.5 Additional tables and figures

Table D6 reports the average level of top wealth shares in the data and in the calibrated model.
One can see that the model matches very well the average level of top wealth shares across top
percentiles. Note, however, that the model slightly overestimates the share of wealth owned by the
top 400 (remember that the top 400 corresponds to the top 0.03% of the top 0.01%, in the model as
in the data), which reflects the fact that the tail index of the wealth distribution is slightly smaller
in the model (1.43) relative to the data (1.5).

Figure D5 compares the estimates obtained from local projections of excess stock market re-

61More precisely, I use a sup-Wald statistics to test for a structural break in the yearly growth of top wealth shares
at an unknown break date for each top percentile p 2 {1%, 0.1%, 0.01%}. The test systematically suggests a structural
break in 1979 at the 10% level for each top percentile.

62An alternative way to “detrend” realized top wealth shares would be to use the Hodrick-Prescott filter. The goal of
this filter is to isolates business cycle dynamics. However, this filter is not adapted to our purpose as aggregate shocks
generate long lived fluctuations in top wealth shares (see Figure 5).
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Table D6: Average level of top wealth shares (model versus data)

Top 1% Top 0.1% Top 0.01% Top 400

Data 0.328 0.139 0.055 0.009
Model 0.318 0.135 0.062 0.022

Notes: The table reports the average level of top wealth shares in the data (using Saez and Zucman (2016) series from 1913 to 2020 and
Forbes magazine from 1982 to 2017) and in the model (using simulated data).

turns on the average wealth in top percentile p at horizon h, in the model and in the data. The
“data” estimates correspond exactly to the ones plotted in Figure 1. To facilitate the comparison
between the model and the data, the “model” estimates are obtained by running the specification
(1) on simulated data from the calibrated model, using the same number of years as in the data
and averaging across simulations.63 Moreover, consistently with the construction of top wealth
shares in the data, I construct the average wealth in a top percentile p in a given year t as the
average between the wealth at the end of year t � 1 and the wealth at the end of year t.64

As a complement to the impulse response functions plotted in the main tex (Figure 2), Figure
D7 reports important economic quantities as a function of the state variable x. More precisely,
Figure D7a plots the drift and volatility of the state variable, x, as well as its associated stationary
density represented as a shaded area. Figure D7b plots the price-to-income ratio p(x) and the
wealth-to-consumption ratio cH(x) of households. Finally, Figure D7c plots the risk-free rate and
the expected log stock market return (i.e., the return on levered equity).

Table D7 reports the sensitivity of asset price moments with respect to three parameters relat-
ing to entrepreneurs (their subjective discount rate rE, their exposure to aggregate risk aE, and
their proportion in the population p) and three parameters relating to households (their subjec-
tive discount rate r, their risk aversion g, and their elasticity of intertemporal substitution y). One
important takeaway is that household preferences that tend to increase the standard deviation of
returns also tend to increase the average interest rate.

Figure D8 plots the decomposition for sp(x) in terms of a “risk-free rate channel” and an “ex-
cess return channel” defined in Proposition 4 as a function of x.

63This is to adjust for the finite sample bias of local projections, which is stressed by Herbst and Johannsen (2021).
That being said, I obtain very similar estimates after running local projections on a very long sample, which means that
this bias is small in the calibrated model.

64This is important to capture the fact that, in the data, the effect of stock market returns is lower at time h = 0 relative
to h = 1.
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Figure D5: Response of wealth in top percentiles to excess stock returns (model versus data)
Notes: The figure reports the estimates for bp,h estimated via the regression (1) for 0  h  8, as well as their 5%–95% confidence

intervals using heteroskedasticity consistent standard errors. Each figure corresponds to a different top percentile. Figure D5a corre-
sponds to all U.S households (p = 100%). Figures D5b-D5d correspond to the top 1%, 0.1%, 0.01% using data from Saez and Zucman
(2016). Figure D5e corresponds to Forbes 400. Dotted lines represent the estimates obtained after running the same regressions on
simulated data from the calibrated model. More precisely, I run the regression on subsamples with the same number of years as in the
data (T = 105), and I report the average of these estimates across subsamples.
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Figure D6: Response of top wealth shares to excess stock returns (model versus data)
Notes: The figure reports the estimates for bp,h estimated via the regression (1’) for 0  h  8 as well as their 5%–95% confidence

intervals using heteroskedasticity consistent standard errors. Each figure corresponds to a different top percentile. Figures D6a-D6c
correspond to the top 1%, 0.1%, 0.01% using data from Saez and Zucman (2016). Figure D6d corresponds to Forbes 400. Dotted lines
represent the estimates obtained after running the same regressions on simulated data from the calibrated model. More precisely, I
run the regression on subsamples with the same number of years as in the data (T = 105), and I report the average of these estimates
across subsamples.

Table D7: Sensitivity analysis

Entrepreneurs’ parameters Households’ preferences

rE aE p r 1/g y

Average risk-free rate 0.022 0.038 0.004 0.015 0.040 0.008
Standard deviation risk-free rate −0.010 0.018 −0.001 0.008 0.021 0.001
Average equity return 0.025 −0.019 −0.014 0.003 −0.006 0.002
Standard deviation equity return −0.161 0.284 0.000 0.092 0.182 0.001

Notes: The table reports the effect of changing each parameter by 1% on asset price moments. More precisely, for each moment mi

and parameter qj, the table reports mi((1+#)qi)�mi((1�#)qi)
2# with # = 0.5.
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Figure D7: Economic quantities across the state space
Notes: This figure plots equilibrium quantities in the model in terms of the share of aggregate wealth owned by entrepreneurs, x.

Expected log stock market return corresponds to the expected stock market return of levered equity; that is, r + l(µR � r)� 1
2 l2s2

R
(19). The bounds of the x-axis correspond to the 1% and the 99% quantiles of the state variable.
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Figure D8: Decomposing the impulse response of asset valuations to aggregate shocks
Notes: The figure plots the decomposition of the instantaneous volatility of asset valuations, sp(x), as well as its decomposition into a

“risk-free rate channel” and an “expected excess return channel” given in (26). The bounds of the x-axis correspond to the 1% and the
99% quantiles of the state variable.
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