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Abstract

This paper studies the response of the wealth distribution to small changes in the economic
environment. I express the first-order response of top wealth shares as a weighted average
response of individual wealth. This allows me to obtain closed-form formulas for the impulse
response function of top wealth shares to perturbations in individual wealth dynamics. This
analytical approach helps to isolate the key forces and empirical moments that determine the
response of wealth inequality to broad economic shocks. It can also serve as a simple account-
ing framework to trace out the dynamics of top wealth shares under various counterfactual
scenarios. I leverage these results to revisit existing issues in the literature, such as the effect of
transitory and permanent shocks in asset returns on wealth inequality.
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Introduction

An important goal for policy making is to understand what drives movements in the wealth dis-

tribution or how different economic policies would affect wealth inequality. One common way to

answer these questions is to build models of the wealth distribution and use them to simulate the

effect of policy changes on wealth inequality. One drawback of these models is that they can be

fairly complex, making it challenging to discern the forces within the models that are responsible

for specific outcomes.

This paper develops a tractable and transparent framework to analyze the dynamics of top

wealth shares under various counterfactual scenarios. I show that the first-order response of top

wealth shares can be expressed as the weighted average response of individual wealth. This al-

lows me to derive closed-form formulas for the dynamics of top wealth shares in response to

perturbations in individual wealth dynamics in a wide range of random growth models.

This analytical approach helps to isolate the key forces and measurable moments that shape

how the wealth distribution responds to broad economic changes. This is useful for more struc-

tural approaches as it can function as a “diagnostic” tool for existing models of wealth inequality.

This is also useful for more reduced-form approaches as it can serve as a simple accounting frame-

work to compute wealth inequality counterfactuals. More precisely, I show how these analytical

results can be combined with data on the wealth trajectory of individuals to trace out the dynamics

of top wealth shares after changes in the economic environment.

The paper is organized in four parts. In the first part, I show that, in a wide range of models,

the first-order response of the average wealth in a top percentile is simply given by the average

wealth response of individuals in the top percentile. Put differently, while economic shocks typ-

ically generate composition changes in the top percentile, these changes are second-order for the

response of the average wealth in top percentiles. Intuitively, this comes from the fact that compo-

sition changes are the product of the relative mass of individuals entering the top percentile and

the average impact of these entrants on the average wealth in the top percentiles: as both terms

are first-order in the size of the perturbation, their product is second-order. The key assumption

is that wealth of each individual is differentiable in the size of the perturbation.

One important subtlety is that the response of the average wealth in a top percentile at horizon

h is equal to the average wealth response at horizon h of individuals who will be in the top percentile
at horizon h, and not the individuals initially in the top percentile (at h = 0). While composition

changes in top percentiles due to a small deviation in the economy are second-order, composition

changes due to the normal passage of time are not. Still, this does not complicate the application

of this formula too much as we can always take these composition changes as given.

To examine the accuracy of this first-order approximation, I also derive a second-order ap-

proximation for the response of the average wealth in top percentiles. This second-order term,

that captures the effect of composition changes, depends on the heterogeneity in the response of
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individual wealth and the mass of individuals around the percentile threshold. Intuitively, the

higher the heterogeneity in wealth deviations, and the higher the density of people around the

threshold, the higher the effect of composition changes. Still, holding other things equal, one

can expect the first-order approximation to be more accurate for distributions that are highly un-

equal, as this reduces the extent to which a perturbation in the economic environment induces

re-ranking.

Second, I characterize the deviation of individual wealth in terms of perturbation in wealth

dynamics in a large class of random growth models. This allows me to obtain simple formula

for the impulse response of top wealth shares to changes in the dynamics of individual wealth in

a wide range of random-growth models. This is very useful since a large part of the inequality

literature uses such processes to model the dynamics of the wealth distribution.

I first focus on the simple case in which individual wealth follows a geometric random walk

with population renewal (e.g. death or population growth). In this case, I obtain a straightfor-

ward formula for the dynamics of top wealth shares in response to a uniform change in individ-

ual growth rates. In particular, the long-run response of top wealth shares is simply equal to the

change in growth rates times the difference between the (wealth-weighted) average age of indi-

viduals in the top percentile and individuals in the overall economy. A similar result holds for the

more general case of a type-specific change in growth rates: in this case, the long-run response

depends on the average number of years spent in that type for individuals across the wealth dis-

tribution.

I then extend these results to the more general case in which individual wealth follows a ge-

ometric random walk with an additive term. In this case, I show that one can obtain similar

formulas after extending the concept of age to be an index discounting previous periods based on

how significantly the additive force affects wealth dynamics. For instance, for an individual that

receives a bequest at birth, this index depends on the ratio of the bequest to the individual’s initial

wealth.

I discuss how these analytical findings can serve as diagnostic tools for structural researchers.

One general result is that deviations in top wealth shares are determined by two things: the di-

rect effect of the perturbation on the growth rate of wealth and the elasticity of terminal wealth to

wealth shocks over time (which depends on how persistent wealth shocks are). One diagnostic

tool for models of wealth inequality interested in running counterfactuals could be to use the ana-

lytical findings to distinguish between these two effects. In particular, I show that existing models

of the wealth distribution report very different values for this elasticity of individual wealth to

changes in growth rate, which implies that these models predict very different responses for the

exact same counterfactual.

In the third part of the paper, I argue that these analytical results can be used as diagnostic

tools for existing models of top wealth inequality. I use off-the-shelf models of inequality from

the recent literature and I compute the effect of a permanent increase in the rate of wealth ac-

3



cumulation by 1 percentage point on top wealth shares in each model. There are two main key

takeaways: the first is that there is a significant heterogeneity across models for the behavior of

top wealth shares in response to this counterfactual. The second is that my analytical formulas,

which are first-order approximations, provide a very good quantification of these counterfactual

changes. Hence, these analytical results can be used as a diagnostic tool to better understand how

existing models of wealth inequality obtain such different counterfactuals.

Finally, in the last part of the paper, I leverage my analytical results to develop a simple ac-

counting framework to compute counterfactuals on the wealth distribution. I propose a simple

model of wealth accumulations that is broadly consistent with the data. The key implication of

the model is that the elasticity of a household’s current wealth to their prior wealth can be directly

read from the relative importance of labor income and bequest in their wealth accumulation.

I then combine this model with data on the lifetime wealth trajectory of individuals at the top

of the wealth distribution, from the Survey of Consumer Finances and the Forbes 400 list. I argue

that my accounting framework provides credible and transparent answers to important questions

in the inequality literature such as: What is the role of labor income inequality and bequests for

wealth inequality? How would top wealth shares evolve if the average return on wealth were

to increase? How does the wealth distribution respond to transitory or permanent shocks in the

returns of specific assets?

Literature review. There is a growing literature trying to understand the effect of various changes

in economic environment on wealth inequality. One strand of the literature has turned to large

macro models that are able to capture the rich heterogeneity of the micro data (e.g. De Nardi,

2004, Kaymak and Poschke, 2016, Benhabib et al., 2019, Peter, 2019, Hubmer et al., 2021, Guve-

nen et al., 2023. . . ). One drawback of these models is that they can be fairly complex, making it

challenging to discern the forces within the models that are responsible for specific outcomes.

Another strand of the literature relies on more stylized and analytically tractable “random

growth” (e.g. Wold and Whittle, 1957, Benhabib et al., 2011, Jones, 2015, Piketty and Zucman,

2015, Moll et al., 2022). While these models are able to obtain closed-form formula for the effect of

changes in Pareto inequality, this is only informative about the asymptotic behavior of top wealth

shares, both with respect to time (long-run) and with respect to wealth (right-tail). I will stress

that these results can be very uninformative about the deviation of top wealth shares at a given

time or at a given top percentile.

Finally, the paper contributes a more reduced-form literature that computes counterfactuals

on wealth inequality. One widespread approach, started with Saez and Zucman (2016), is to use

an accounting decomposition of wealth in top percentiles assuming that the set of households in

the top percentile remains the same over time (see Martı́nez-Toledano, 2020 or Mian et al., 2020 for

applications). The accounting framework discussed in the last section of the paper can be seen as a

version of this approach that does not require this assumption — while the difference between the
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two does not matter much in the short-run (say, a few years), it can lead to dramatically different

results in the longer-run (say, a few decades). My accounting approach is closer, in spirit, to the

long-run counterfactual done by Feiveson and Sabelhaus (2018) and Ozkan et al. (2023), who ask

how wealth inequality would change if the lifetime trajectory of the individuals in the top 0.01%

were to change. This insight is related to Gomez and Gouin-Bonenfant (2024), who show that the

long-run effect of a perturbation on Pareto inequality depends on its effect on the entire trajectory

of individuals who end up in the top percentile.

My analytical approach provides closed-form formulas for the transition dynamics of top

wealth shares in response to (small) changes in the growth rate of individual wealth. This im-

proves on the existing literature, that typically resort to numerical method (Kolmogorov-Forward

equation) or simulations to compute the response of top wealth shares to aggregate shocks. More-

over, my results on the transition path of top wealth shares complements Gabaix et al. (2016),

Luttmer (2016), and Atkeson and Irie (2022), who characterize analytically the convergence of

densities according to global norms (e.g. the integral of the absolute difference, or the difference

in moments). For the case of a mechanical effect in the growth rate of wealth, I show that one

key statistic is the gradient of age with respect to wealth. This relates this paper to Luttmer (2011)

who computes this gradient in a model of firm growth and compares it with the data. Finally, the

analytical approach in this paper relies on similar tools as Gomez (2023), who studies the change

in top wealth shares over a small period of time (rather than deviations in top wealth shares due

to a small perturbation).

My results are closely related to Saez and Zucman (2019), who studies the effect of an increase

in billionaire taxation on the average wealth of future billionaires. In particular, they show that, in

a model in which wealth follows a random-walk, the infinitesimal effect of an increase in wealth

tax can be expressed as the wealth-weighted average number of years that fortunes have been

exposed to the wealth tax, which is similar to the type of results I obtain in Section 2. Relative

to this paper, my contribution is to generalize this framework to other types of perturbations,

characterize the condition under which composition changes are first-order (depending on the

baseline economy and the type of the perturbation), and examine their second-order effects, both

analytically and quantitatively.

At a general level, this paper contributes to the growing work employing first-order approxi-

mations to characterize economies with a large degree of micro heterogeneity — see Chetty (2009)

and Kleven (2021) for a review of this approach in public finance, Costinot and Rodrı́guez-Clare

(2014) in trade, and Baqaee and Rubbo (2023) or Auclert et al. (2018) in macroeconomics.

Roadmap. The paper is organized in three sections. Section 1 characterizes the response of the

average wealth in the top percentile in terms of the average response of individual wealth in the

top percentile. Section 2 characterizes the response of individual wealth in terms of perturbation in

the dynamics of individual wealth. Combining these results allow me to obtain simple formula for
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the effect of perturbation in individual wealth on top wealth shares. Section 3 presents a reduced-

form approach to compute counterfactuals using data on the trajectory of individuals across the

wealth distribution.

1 Counterfactual Deviations in Top Wealth Shares

In this section, I study perturbations in the distribution of wealth around a baseline economy.

Section 1.1 presents a general decomposition for the deviation in the average wealth in a top

percentile in terms of an intensive margin (the average wealth deviation of individuals in the

top percentile) and an extensive margin (deviation in the composition of individuals in the top

percentile). Section 1.2 and Section 1.3 then derives simple expressions for these terms at the first

and second-order, respectively.

1.1 Deviation in the Average Wealth in the Top Percentile

Consider an economy indexed by time t ∈ R with a continuum of individuals indexed by i. As-

sume that the cumulative distribution function of wealth is absolutely continuous and increasing,

with a finite average.1 Denote Wit the wealth of individual i at time t. Consider a given top per-

centile p (say, the top p = 1%), and denote Qt the quantile corresponding to the top percentile p
at time t:

P(Wit ≥ Qt(p)) = p (1)

Denote Wt the average wealth in the top percentile p:

Wt = E[Wit|Wit ≥ Qt]. (2)

Consider a change in the economic environment compared to a baseline scenario (e.g. devi-

ation in technology or asset prices) indexed by θ, starting from time t = 0. For any economic

variable Yt in the baseline economy (such as individual wealth, quantile, or average wealth in the

top), denote Yt(θ) its value in the perturbated economy indexed by θ and ∆Yt = Yt(θ)− Yt(0) its

difference between the counterfactual and the baseline economies. It is important to keep in mind

that ∆ represents a vertical deviation (i.e. with respect to a perturbation) rather than a horizontal

change (i.e. a change with respect to time). To visualize this, Figure 1 plots an example for the

wealth path of some individual i over time, in the baseline economy and the perturbated one.

I am interested in the effect of this deviation on the average wealth in the top percentile. I

will focus on the response of the average wealth in the top percentile for two reasons. First, it is

typically the object measured and reported in existing models of inequality. Second, requirement

for differentiability of the average wealth are typically lower relative to quantiles. Finally, note

1This is only to simplify the exposition. In reality, one only needs this assumption to hold around the quantile.
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Figure 1: Baseline (solid) and perturbated (dashed) wealth path for some individual i

that the knowledge of the response of all top wealth shares is equivalent to the knowledge of

the response of the whole distribution. By definition, the deviation in the average wealth in top

percentile is:

∆Wt = E[Wit + ∆Wit|Wit + ∆Wit ≥ Qt + ∆Qt]− E[Wit|Wit ≥ Qt]. (3)

The key subtlety is the perturbation typically changes not only the wealth of individuals initially

the top percentile, but also the set of individuals in the top percentile (in the baseline versus per-

turbated economy). More precisely, adding and subtracting (3) by E[Wit + ∆Wit|Wit ≥ Qt] gives

that the deviation in the average wealth in the top percentile is the sum of two terms:

∆Wt = E [Wit + ∆Wit|Wit ≥ Qt]− E [Wit|Wit ≥ Qt]︸ ︷︷ ︸
Intensive margin

+ E [Wit + ∆Wit|Wit + ∆Wit ≥ Qt + ∆Qt]− E [Wit + ∆Wit|Wit ≥ Qt] .︸ ︷︷ ︸
Extensive margin

(4)

The first term corresponds to the average wealth change for the set of individuals in the top per-

centile in the baseline economy. The second term reflect the effect of changes in the composition

of households in the top percentile: they correspond to the counterfactual wealth of individuals

that enter the top percentile minus the counterfactual wealth of individuals that exit it. Note that,

by definition, the second term is always non-negative.

1.2 First-Order Approximation

We now assume that individual wealth is differentiable with respect to the size of the deviation θ.

Assumption 1. The function θ → Wit(θ) is in C1 for all individuals.2

2Here, and in the rest of the paper, I use Ck to denote the set of functions that are differentiable k−th times with

7



When this assumption is satisfied, we denote dWit = W ′
it(θ)dθ. This assumption restricts the

set of economic deviations to the ones that generate smooth changes in individual wealth. For

instance, this assumption allows for deviations in the economic environment that affect the size of

individual wealth jumps; however, it rules out deviations that affect the probability of this jump

happening. One way to think about this assumption is that it allows for deviations that change the

realization of wealth across different state of natures, not for deviations that change the probability

of these states happening.3

While the first assumption ensures that deviations in wealth are first-order in θ, the second

assumption ensures that the mass of individuals that enter or exit is first-order in θ. Together,

these two assumptions ensure that the extensive margin in (4) is second-order in θ.

Proposition 1 (First-Order Approximation). At the first-order in θ, the deviation in the average wealth
in a top percentile is:

dWt = E [dWit|Wit ≥ Qt] .

This proposition says that the first-order deviation in the average wealth in a top percentile is

simply given by the average wealth deviation of individuals in the top percentile. Relative to the

expression for the non-infinitesimal deviation (4), this proposition says that one can abstract from

the extensive margin: the first-order effect of a shock on the average wealth in a top percentile can

be computed as if the set of individuals in the top percentile remained the same in the perturbated

economy. This is very convenient, both analytically (as one does not need to take into account

re-ranking effects), but also empirically (as one only needs data on the effect of the perturbation

on the wealth of individuals currently in the top)

Composition changes over time. This proposition characterizes the entire impulse response

function of the wealth distribution, from its instantaneous response t = 0 to its long-run response

t → ∞. Despite the simplicity of the formula, note that there is an important subtlety: what mat-

ters for the response of the average wealth in the top percentile at some horizon t is the average

wealth response of individuals who will be in the top percentile at time t, not the response of those

who are initially in the top at t = 0. Mathematically:

dWt = E [dWit|Wit ≥ Qt] ̸= E [dWit|Wi0 ≥ Q0] . (5)

The impulse response of the average wealth in a top percentile is not the average impulse response

of individuals initially in the top percentile. The difference between the two typically grows with

continuous derivatives.
3Still, this more general case could be handled using similar techniques as in Gomez (2023). However, in this case,

composition changes would become first-order, as some individuals experience discontinuous changes in wealth in
response to small changes in the economic environment
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the horizon t, since the population in the top percentile typically renews over time.4 One way

to summarize this point is that, while composition changes in the top percentile induced by the

perturbation are first-order in θ, composition changes induced by the normal passage of time are

not.5 We will see many examples of this distinction below.

Quantiles. As shown in the proof of Proposition 1 in Appendix A, the idea that composition

changes do not matter at the first order also works for quantiles; that is,

dQt = E [dWit|Wit = p] .

In the rest of the paper, however, I focus on the average wealth in top percentiles shares in the rest

of the talk as they are typically easier to work with, both theoretically and empirically.

Logarithm. I now extend Proposition 5 to derive a similar formula for the deviation in the log
average wealth in top percentiles in terms of the deviations in log individual wealth. Dividing

Proposition 1 by Wt and rearranging gives:

d log Wt = EWit [d log Wit|Wit ≥ Qt] . (6)

In words, the log deviation for the average wealth in the top percentile is the wealth-weighted

average log deviation of individuals in the top percentile. Working with logarithms is particularly

useful to express the deviation in top wealth shares, as St(p) = pWt(p)/Wt(100%) implies that

the log deviation in the top wealth share is the difference between the log deviation for the average

wealth in the top and in the economy, i.e. d log St(p) = d log Wt(p)− d log Wt(100%).

1.3 Second-Order Approximation

I now examine the response of the average wealth in a top percentile beyond the first-order. I find

that the second-order term depends on the cross-sectional variance of wealth deviations as well

as the shape of the wealth distribution. The more unequal the wealth distribution is, the smaller

the effect of composition changes, and, therefore, the better the first-order approximation is.

One can integrate the expression obtained in Proposition 1 to obtain an expression for a non-

4Formally, a decomposition similar to (4) gives the following relationship between the two:

dWt = E [dWit|Wi0 ≥ Q0]︸ ︷︷ ︸
Wealth deviation for

individuals initially in top

+ E [dWit|Wit ≥ Qt]− E [dWit|Wi0 ≥ Q0]︸ ︷︷ ︸
Difference between the wealth deviation of individuals

that entered and those that exited between 0 and t .

5One reason is that the horizon t is not-infinitesimal, in contrast with the size of the perturbation θ. However, even
for infinitesimal horizons, Gomez (2023) show that composition changes are first-order with respect to the horizon
whenever wealth paths are not differentiable with respect to time.
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infinitesimal change in policy θ

∆Wt =
∫ θ

ϑ=0
E [dWit(ϑ)|Wit(ϑ) ≥ Qt(ϑ)]dϑ. (7)

This expression differs from the first-order approximation obtained in Proposition 1 as the set of

individuals in the top percentile (i.e., for which Wit(ϑ) ≥ Qt(ϑ)) changes along the policy path.

One can approximate the integral (7) using the trapezoid rule to obtain a second-order approxi-

mation for the counterfactual change in top shares:

∆Wt =
1
2

(
E [∆Wit|Wit ≥ Qt] + E [∆Wit|Wit + ∆Wit ≥ Qt + ∆Qt]

)
+ o(θ2). (8)

This second-order approximation expresses the change in the average wealth in the top percentile

as the average of two terms: the average wealth deviation of households who are in the percentile

in the baseline economy, E [∆Wit|Wit ≥ Qt] and the average wealth deviation of households who

are in top percentile in the perturbated economy, E [∆Wit|Wit + ∆Wit ≥ Qt + ∆Qt]. It is straight-

forward to rewrite (8) to obtain:6

∆Wt = E [∆Wit|Wit ≥ Qt]︸ ︷︷ ︸
Intensive margin

+
1
2

(
E [∆Wit|Wit + ∆Wit ≥ Qt + ∆Qt]− E [∆Wit|Wit ≥ Qt]

)
+ o(θ2)︸ ︷︷ ︸

Extensive margin

.

The first term, which is first-order in θ, is simply the intensive margin defined in (4). The second

term, which is second-order in θ, is half the difference between the average deviation of people

that enter the top percentile in the perturbated economy, relative to the baseline economy, and

people that exit it. It can be seen as a second-order approximation of the extensive margin defined

in (4). The next proposition gives an analytical expression for this term in terms of the variance of

the deviation in wealth across individuals.

Proposition 2 (Second-Order Approximation). Assume that the function θ → Wit(θ) is in C2 and that
W → (E[∂Wit], E[∂W2

it]) is continuous. Then, the deviation in the average wealth in a top percentile is:

∆Wt = E[∆Wi|Wit ≥ Qt]︸ ︷︷ ︸
Intensive margin

+
1
2

gt(Qt)

p
V[∆Wi|Wit = Qt] + o(θ2)︸ ︷︷ ︸

Extensive margin

,

6Comparing this term with the exact extensive margin defined in (4) implies that the reminder — the term denoted
by o(θ2) — is:

E

[
Wit +

1
2

∆Wit

∣∣∣Wit + ∆Wit ≥ Qt + ∆Qt

]
− E

[
Wit +

1
2

∆Wit

∣∣∣Wit ≥ Qt

]
.

This term, which is third-order in θ, corresponds to the average wealth of people that enter the top percentile (averaged
before and after the perturbation) minus the average wealth of people that exit the top percentile. Relative to the second-
order term, this term captures the asymmetry of the deviation in average wealth for entering and exiting agents: we
can expect this term to be close to zero when the density of agents is close to constant around the threshold and the
distribution of wealth deviation is symmetric.
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where V denotes the cross-sectional variance of the deviation in individual wealth.

This proposition provides a formula for the deviation in average wealth that takes into ac-

count the second-order effect of composition changes. One nice result is that the deviation in the

average wealth in the top percentile still only depend on the wealth deviation of individuals in

the top percentile, even at the second-order. Second, it makes it easier to quantify second-order

effects due to composition changes, both theoretically and empirically. In particular, note that the

second-order term increases with the density of households at the percentile threshold and with

the variance of wealth deviations at the percentile threshold, as both increase the importance of

composition effects. In Appendix B.2, I use this insight to argue that second-order terms are likely

to be small for wealth distributions that are as unequal as in the data.

2 Application to Random Growth Models of Inequality

The previous section expressed deviations of the average wealth in top percentiles in terms of

deviations in the wealth of top individuals. I now use this result to characterize the impulse

response of top wealth shares to shocks in individual wealth.

I focus on random growth models inequality, which are commonly used in the literature as

they can generate realistic distributions for highly skewed economic variables such as wealth,

income, firm size or city size. Focusing on statistical models of wealth allows me to maintain

a fairly large degree of generality while abstracting from specific economic considerations (as

discussed below, a lot of different economic models can give rise to random-growth models).

Section 2.1 studies the case where individual wealth follows a geometric random walk with some

probability of wealth dissipation (e.g. death). Section 2.2 studies the case where individual wealth

follows a geometric random walk plus some additive shock (e.g. labor income). Finally, Section

2.3 discusses my results in the context of the existing literature.

2.1 Geometric Random Walk with Dissipation Shocks

Setup. In this section, I assume that individual wealth follows a random walk until they die

(or, more generally, suffer a dissipation shock), in which case their wealth resets to an initial

value. This type of statistically process has often been used to study the distribution of wealth

(e.g. Piketty and Zucman, 2015, Jones, 2015, Moll et al., 2022, Gomez and Gouin-Bonenfant, 2024),

income (e.g. Jones and Kim, 2018), and firm size (e.g. Luttmer, 2011) — I relegate the reader to

these papers for micro-foundations. More precisely, I assume that individual wealth evolves as a

geometric random walk

Wit+1 = Git+1Wit, (9)

until they suffer a “dissipation shock”, in which case wealth is reset to some random value Yit+1 >

0. One natural interpretation of this dissipation shock is death or population growth, but the con-
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cept is more general.7 Importantly, and this is an key generalization relative to existing random-

growth models, I allow the joint distribution of the initial wealth Yit, the growth rate of wealth, Git

and of the dissipation shock to be arbitrarily correlated over time, and, potentially, to depend on

time t and individual i.8

In this model, individual wealth is positive almost sure. Hence, taking logs and iterating

backward on (9) allows us to write log individual wealth as the cumulative sum of past shocks:

log Wit =
t

∑
s=t−ait+1

log Gis, (10)

where ait denotes the age of the individual (i.e. the number of periods since the last dissipation

shock). Combining this equation with (6) implies the following formula for the log deviation in

the average wealth in a top percentile.

Proposition 3. Consider an arbitrary perturbation path in the realization of growth rates in (9) d log Gis

for all i and s ≤ t. The resulting deviation of the average wealth in the top percentile is:

d log Wt = EWit

[
t

∑
s=t−ait+1

d log Gis

∣∣∣∣Wit ≥ Qt

]
. (11)

where EWit denotes the wealth-weighted expectation with respect to the wealth distribution.

In words, this proposition says that the log deviation of the average wealth in the top percentile

is the wealth-weighted average of the sum of the past perturbation of growth rates experienced by

individuals in the top percentile. One key point is that the deviation in log Wt depends on all the

previous perturbations in the growth rate of these top individuals, not just the ones that happened

when they already were in the top percentile.9

Uniform perturbation. The expression obtained in Proposition 3 is very general. The next corol-

lary considers the particular case in which there is a uniform increase in individual growth rates

by dg started τ periods ago. This increases the log wealth of individual i by min(ait, τ)dg, where

min(ait, τ) corresponds to the number of periods in which individual i experienced these higher

growth rates. The resulting deviation for the average wealth in a top percentile is a weighted

average of these individual deviations.

7We will discuss more precisely how to treat bequests and dynasties in Section 3. See Moll et al. (2022) for other
interpretations.

8The only important condition for the results below is that (i) a perturbation to log wealth at time s transmit one-to-
one to time t in the absence of dissipation shock and (ii) the resulting distribution of individual wealth at time t satisfies
the smoothness assumptions described in the previous section.

9This is related to our discussion of (5) in the previous section.
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Corollary 1. Consider a uniform perturbation dg in the growth rate of individual wealth from t − τ to t.
The resulting deviation in the average wealth in the top percentile at t is:10

d log Wt = EWit [min(ait, τ)|Wit ≥ Qt]dg. (12)

The key takeaway is that the distribution of ages in the top percentile acts as a “sufficient statis-

tic” for the effect of a uniform increase in growth rates on the average wealth in a top percentile.

Put differently, while the exact specification of the model (e.g.the distribution of growth rates Git

and dissipation shocks, or the extent to which they vary over time, between ages, or across types

of agents) matters for the counterfactual effect of a change in individual growth rate on the wealth

distribution, it only matters through the effect that it has on the joint distribution of wealth and

age in the baseline economy.

Note that, in the absence of dissipation shocks (e.g. infinite-horizon model), the relative change

in the average wealth in top percentiles after τ period would simply equal τ dg; that is, it would

grow without bounds with the horizon. Dissipation shocks, hence, are key to generate finite long-

run elasticities of top wealth shares to increases in individual growth rates.11

It is particularly intuitive to consider the instantaneous effect (τ = 1) and long-run effect (τ =

∞) of this uniform increase in growth rates . Corollary 12 implies

d log Wt = dg for τ = 1

d log Wt = EWit [ait|Wit ≥ Qt]dg for τ = ∞.

In words, the short-run elasticity of the average wealth in the top percentile is one while its long-

run one is given by the average age in the top percentile. The higher the average age in the top, the

longer individuals in the top benefit from these higher growth rates, and, therefore, the larger the

resulting deviation in their wealth. The flipside of this observation is that, the higher the average

in the top, the longer it takes for top wealth shares to converge to their long-term values.

This result is related Gabaix et al. (2016), who study the speed of convergence of random-

growth models between two steady states. My contribution, relative to this paper, is to character-

ize the transition dynamics of the average wealth in a top percentile following a uniform change

in growth rates (they focus on characterizing the transition dynamics of the Laplace transform of

the wealth density). Note that Corollary 1 implies that the speed of convergence of the average

wealth in a top percentile is inversely related to the average age of individuals in the top. Hence,

this result implies a tight link between two important observations in the inequality literature:

Gabaix et al. (2016)’s emphasis that standard random growth models generate slow transition dy-

namics that are too slow relative to the data and Luttmer (2011)’s emphasis that they imply an

10This follows directly from setting d log Gis = 1s≥t−τ dg in Proposition 3.
11The idea that dissipation shocks (e.g. overlapping generation models) are important to generate finite elasticities

of capital to interest rates is well-known in the literature. See, for instance, Piketty and Saez (2013) or Moll et al. (2022).
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average age in top percentile that is too high relative the data (see Atkeson and Irie, 2022 for a

related intuition). I discuss in more detail the gradient of age in random-growth models in Section

2.4 below.

I now briefly discuss the implication of these results for the log deviation of the top wealth

share St ≡ pWt(p)/Wt(100%). As discussed in the previous section, taking logarithms and differ-

entiating gives that the log deviation of the top wealth share is simply given by the difference in

the log deviation of the average wealth in the top percentile and the log deviation of the average

wealth in the economy. In particular, Corollary 1 implies

d log St =
(

EWit [min(ait, τ)|Wit ≥ Qt]− EWit [min(ait, τ)]
)

dg. (13)

The evolution of top wealth shares simply depends on the (wealth-weighted) age distribution in

the top percentile relative to the economy. Note that the short-run response of top wealth shares

(τ = 1) is zero, which reflects the fact that everyone in the economy benefits similarly from a

change in growth rates in the first year. However, the long-run response of top wealth shares

is positive as long as the average age in the top percentile is higher than the average age in the

economy. Finally, note that, the higher the average age of people in the economy, the longer it

takes for top wealth shares to converge to their long-run values.

Type-specific perturbation. I now discuss another special case that is commonly encountered in

the inequality literature: an increase in the growth rate of only one type of agents (e.g. Luttmer,

2012 or Gabaix et al., 2016). In this case, we can still obtain a relatively simple formula for the

deviation of the average wealth in the top percentile.

Corollary 2. Consider a set of type-specific perturbation dg in the growth rate of individual wealth from
t − τ to t. The resulting deviation in the average wealth in the top percentile at t is:12

d log Wt = EWit

[
t

∑
max(t−τ,t−ait+1)

θis

∣∣∣∣Wit ≥ Qt

]
dg. (14)

where θis is a dummy variable denoting whether agent i at time s belongs to that type

In words, the effect of an increase in the growth rate of agents of type j depends on the (wealth-

weighted) number of periods that individuals in the top percentile have spent in this specific

type in the previous τ periods. In particular, the short-run elasticity of the average wealth in the

top percentile to a type-specific increase in growth rates is the fraction of individuals in this top

percentile that are currently of this type. Its long-run elasticity is the average number of periods

that individuals in the top percentile have spent in this type over their lifetimes.

Note that the average wealth in a top percentile responds more to a uniform increase in indi-

vidual growth rates (Corollary 1) than to a type-specific one (Corollary 2). However, the opposite
12This follows directly from setting d log Gis = θis1s≥t−τ dg in Proposition 3.
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may hold for top wealth shares; in particular, an increase in the growth rate of the type of agents

making it to the top of the distribution will tend to generate faster and larger changes in top wealth

shares relative to a uniform increase in the growth rate of all agents. This distinction is typically

very important quantitatively.

2.2 Geometric Random Walk with Additive Shocks

While the model discussed in the previous section gave simple formulas for the dynamics of top

wealth shares, it may a bit too stylized to be taken to the data: on the one hand, it assumes perfect

persistence of wealth within each lifetime, while, on the other hand, assuming zero persistence at

when the dissipation shock hits.

I now discuss a more flexible process which may be more realistic. More precisely, I assume

that wealth evolves geometrically with some additive force (a Kesten, 1973 process):

Wit+1 = Git+1Wit + Yit+1, (15)

where Git, Yit are positive random variables. This type of process has been used to analyze the

distribution of city size (e.g. Gabaix, 1999) as well as the distribution of wealth (e.g. Benhabib et

al., 2011 and Gabaix et al., 2016).13 As above, I allow the distribution of (Git+1, Yit+1) to be serially

correlated, and to potentially depend on the time t or the individual i.14

Differentiating (15) with respect to an arbitrary sequence of perturbations for the growth rate

of wealth (d log Git)s≤t gives the following recurrence relation for the deviation in log wealth:15

d log Wit+1 =

(
1 − Yit+1

Wit+1

)
(d log Wit + d log Git+1) .

Solving this system backward gives the perturbation of individual wealth at time t as the cumu-

lated sum of all previous shocks in the growth rate of wealth that happened in the past:

d log Wit =
t

∑
s=−∞

(
t

∏
u=s

(
1 − Yiu

Wiu

))
d log Gis. (16)

Combining this equation with (6) gives the following formula for the log deviation of the average

wealth in the top percentile.

Proposition 4. Consider an arbitrary perturbation path in the realization of growth rates in (15) d log Gis

13In Benhabib et al., 2011, this process models the law of motion of wealth across cohorts, which is a mix of bequest
from the previous cohort, Wit, and savings due to human capital Yit. In Gabaix et al., 2016, this process models the law
of motion of financial wealth of infinite-horizon agents who are assumed to consume a fixed fraction of their wealth
and who receive some labor income every period Yit.

14Again, the only condition is that the resulting distribution of individual wealth at time t satisfies the smoothness
assumptions described in the previous section.

15It would be straightforward to extend these formulas to consider deviations in labor income (d log Yit).
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for all i and s ≤ t. The resulting deviation of the average wealth in the top percentile is

d log Wt = EWit

[
t

∑
s=−∞

(
t

∏
u=s

(
1 − Yiu

Wiu

))
d log Gis

∣∣∣∣Wit ≥ Qt

]
. (17)

As in Proposition 11, this proposition says that the log deviation of the average wealth in the

top percentile is the wealth-weighted average of the sum of the past perturbation of growth rates

experienced by individuals currently in the top percentile. The important distinction, however,

is that the extent to which past wealth shocks are discounted over time depends on the relative

importance of the additive force Yit in the level of wealth Wit. Intuitively, the higher the magnitude

of Yit relative to wealth, the lower the effect of past shocks in wealth on current wealth.

2.3 Discussion

General statistical processes. So far, we have focused on the case where individual wealth fol-

lows a geometric random walk with dissipation shocks (Section 2.1) or with additive shocks (Sec-

tion 2.2). In in Appendix C.1, I generalize such analysis to very general statistical models. The

key idea is that the deviation of individual wealth can always be rewritten as the cumulative sum

of past perturbations (moving-average representation). Different statistical models for individual

wealth simply lead to different expressions for this moving average representation. I discuss this

point in more details in Appendix C.1.

Deviation in tail indices. I now briefly emphasize the advantage of my approach relative to the

existing literature on inequality, which tends to focus on analytical characterization for tail indices.

When wealth follows a random growth model of the type discussed in Section 2.1 or 2.2, one can

often show that, under additional condition of stationarity, the distribution of wealth has a right

Pareto tail; that is,16

log W(p) ∼ −1
ζ

log p as p → 0. (18)

where ζ denotes the tail index of the wealth distribution. Consider a permanent perturbation in

the distribution of these growth rates starting from time t = 0. In this case, one can typically show

that the perturbated wealth distribution remains Pareto and obtain an analytical formula for the

resulting deviation in the tail index (see Appendix C.2 for examples). This analytical characteriza-

tion implies the following characterization for top wealth shares:17

lim
t→∞

d log Wt(p) ∼ (−d log ζ) log Wt(p) as p → 0. (19)

16Here, and in the rest of the paper, I use f (p) ∼ g(p) as p → 0 to denote limp→0 f (p)/g(p) = 1.
17Formally, (18) implies limt→∞ d log Wt(p) ∼ −(ζ−2 dζ) log p ∼ −(ζ−1 dζ) log W(p) as p → 0.
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The key takeaway is that, while a deviation in the tail index is informative on the asymptotic be-

havior of top wealth shares, it only characterizes the asymptotic deviation in top wealth shares in

the long-run (t → ∞) and in the right tail (p → 0).18 This is much less precise than the expressions

obtained in Proposition 3 or Proposition 4, that characterize the deviation of the average wealth in

the top at any given time horizon t and at any given top percentile p. In fact, I discuss in Appendix

C.2 how focusing on the response of the tail index can be very uninformative about the actual

response of top wealth shares, even when one restricts oneself to the long-run response of top

percentile shares. Moreover, my analytical results characterize the response of top wealth shares

to the wide range of perturbations that affect top wealth shares without affecting tail indices (e.g.

transitory perturbations or perturbations that only impact individuals for a finite amount of time

periods) and they are also valid in much more general models (without requiring that the wealth

distribution is stationary or obeys a Pareto shape). Of course, all these advantages come at a cost:

this analytical framework can only characterize small deviations in the wealth distribution away

from a baseline.

2.4 A Diagnostic Tool for Models of Inequality

I now use these analytical results as a “diagnostic tool” to examine counterfactuals implied by

existing models of top wealth inequality. The two key takeaways of this section are that: (i) my

(first-order) approach provides a good approximation to the (non-infinitesimal) deviation of top

wealth shares in each model and (ii) it provides a clear interpretation of what drives the difference

across these models.

I focus on examining three models of wealth inequality, which are all particular instances of the

model with dissipation shocks discussed in Section 2.1: Gabaix et al. (2016), Moll et al. (2022) and

Gomez and Gouin-Bonenfant (2024). To be able to compare these models more easily, I examine

the effect of the same experiment across these models: I increase the rate of capital accumulation

by 1 percentage point in each model. For each model, I report the long-run log deviation for the

average wealth in the top 0.01%, for the average wealth in the economy, and for the difference

between the two (i.e., the log deviation in the top 0.01% wealth share). I also report the results

from my first-order formula, which, in this context, simply corresponds to the average number of

periods since the last dissipation shock in each group.

The first takeaway from Table 1 is that the first-order approximation captures well the devia-

tion in the average wealth in the top 0.01%, the average wealth for the economy (top 100%), and,

therefore, the difference between the two (the top 0.01% wealth share). The non-infinitesimal de-

viation in top wealth shares is typically larger than the results from the first-order approximation,

18If the wealth distribution is exactly Pareto, then there is a one-to-one mapping between the tail index and the level
of top wealth shares. However, most existing models of wealth inequality only imply that the wealth distribution has
a Pareto tail, consistently with the data. One exception is models where individual wealth follows a random walk with
a reflecting barrier at some lower level of wealth.
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Table 1: Long-Run Semi-Elasticity of Wealth to Individual Growth Rates (x100)

Non-infinitesimal deviation First-order deviation

Top 0.01% Top 100% Difference Top 0.01% Top 100% Difference

Moll et al. (2022) 149 31 117 134 26 108
Gabaix et al. (2016) 116 44 71 85 37 48
Gomez and Gouin-Bonenfant (2024) 24 10 14 22 10 12

Notes: The table reports the effects of a uniform 1 percentage point increase in the growth rates of individual wealth for the log
average wealth in the top 0.01% (Column 1), top 100% (Column 2), and for the top 0.01% wealth share (Column 3), which is the
difference between the two. The table also reports the wealth-weighted average effect of a 1pp. uniform increase for individual
wealth, which corresponds to the wealth weighted average age in each top percentile (i.e. number of periods since last dissipation
shock), see Proposition 3.

reflecting the fact that the re-ranking of individuals always has a positive effect on inequality.19

The second takeaway is that, while all of these models are calibrated to match the shape of the

U.S. distribution, they imply very different joint distribution for age and wealth, and, therefore,

for the response of top wealth shares to an increase in the growth rate of individual wealth.20 The

average “age” of households in the top 0.01% (number of periods since dissipation shock) ranges

from 22 in Gomez and Gouin-Bonenfant (2024) to 134 in Moll et al. (2022). Hence, a given increase

in the growth rate of individuals will lead to much larger responses for the average wealth in the

top percentile in Moll et al. (2022) relative to Gomez and Gouin-Bonenfant (2024): more precisely,

I find that a 1pp increase in individual growth rate increases the wealth share of the top 0.01% by

1.17 log points in Moll et al. (2022) but only 0.14 log points in Gomez and Gouin-Bonenfant (2024).

Hence, despite the fact that these models match similar cross-sectional moments about the

wealth distribution (e.g. level of top wealth shares), they have vastly different implications on the

relationship between wealth and age, and therefore, on the effect of a given increase in individual

growths rate on inequality.

How comes different models lead to drastically different age gradient across the wealth distri-

bution? I explore this question in Appendix C.2. I show that, in a large class of random-growth

models, the average age increases linearly with log wealth, with a slope equal to the inverse of

the derivative of the cumulant generating function (CGF) of the growth rate of wealth taken at

the tail index. Intuitively, the more convex the CGF is, the higher the dispersion in growth rates

across individuals, and, therefore, the less time it takes for the most successful individuals to reach

top percentiles. In particular, a model in which the growth rate of individual wealth has a high

skewness or kurtosis (potentially because some individuals experience higher growth rates over

long periods of time, a la Luttmer, 2011) is a model in which the luckiest households reach the

right tail of the distribution pretty quickly, and, therefore, in which top wealth shares respond less

to a given increase in individual growth rates.

One remaining question is: given that these models disagree so much on the gradient of “age”

19Formally, the extensive margin in (4) is positive.
20Note that Gabaix et al. (2016) is calibrated to match the distribution of income rather than wealth.
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across the wealth distribution (i.e. the extent to which wealth comes from old money or new

money), and that this gradient play a key role for counterfactuals, can we discipline this gradient

using actual microdata? I explore this question in the next section.

3 An Accounting Framework to Compute Counterfactuals

The previous sections of the paper developed analytical tools to quantify the effect of changes

in individual wealth dynamics on the dynamics of top wealth shares. I now use these results to

develop a simple accounting framework to compute the response of top wealth shares to various

counterfactual scenarios. Section 3.1 presents the framework, Section 3.2 discusses the data, and

Section 3.3 presents some applications.

3.1 A Model of Wealth Accumulation

I consider the following law of motion of wealth for household i between t and t + 1 is:

Wit+1 = Rit+1Wit + Bit+1 + Yit+1 − Cit+1, (20)

where Rit+1 > 0 denotes the return on wealth, Yit+1 > 0 denotes labor income, Bit+1 > 0 denotes

bequests received, and Cit+1 denotes consumption. With some probability, individuals die, at

which point their wealth is redistributed as inheritance to their children.

Linearizing this equation and solving backward gives the deviation in log wealth at some point

t as the cumulative sum of past perturbations in returns, labor income, and bequests.

Proposition 5. The effect of a sequence of deviation in past returns, labor income, and bequests on current
wealth is:

d log Wit =
t

∑
s=t−ait+1

(
t

∏
u=s+1

(
1 − Biu + Yiu − ξiuCiu

Wiu

))
dyis (21)

where dyis denotes the direct effect of the perturbations on the relative wealth at time s:

dyis ≡
(

1 − Bis + Yis − Cis

Wis

)
d log Ris +

Bis

Wis
d log Bis +

Yis

Wis
d log Yis

and ξiu denotes one minus the elasticity of consumption to wealth

ξiu ≡ 1 − Wiu

Ciu

∂Ciu

∂Wiu

This proposition expresses the deviation in consumption at some present time as a sum of

the direction deviations in previous wealth. That the persistence of these perturbations on wealth

depend on the relative importance of labor and bequest on wealth, as well as the marginal propen-

sity to consume out of wealth. Assuming that the remaining perturbation are not causally related,
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this expression allows one to trace out the effect of returns, labor income or bequests using the

historical path of the labor income and bequest to wealth ratios of households.

To visualize this equation, Figure 2 plots the elasticity of current wealth to an exogenous in-

crease in returns s periods before on the household’s own wealth (in blue) as well as on the house-

hold’s parent wealth (in red). There is a normal decay over time due to the importance of labor

income relative to financial wealth. There is also a discrete discounting that happens when re-

ceiving bequest: receiving a large inheritance decreases the effect of the household own returns

received prior to this inheritance while increasing the effect of the parents own returns. Finally,

note that the model implies that the persistence of returns is very small for individuals at the bot-

tom of the wealth distribution, but very high for individuals at the top of the wealth distribution

(for which labor income represents an infinitesimal fraction of current wealth.)
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Figure 2: Elasticity of present wealth (time t) to a shock in prior wealth (time s) in the model.
Notes: The figure plots the elasticity of wealth of household i at time t with respect to wealth of household j at time s < t,

∂ log Wit/∂ log Wjs, as a function of s. In blue is the case j = i (household’s own wealth), and in red is the case where j leaves a
bequest to i (parents’ wealth). The sum of the area under these curves can be interpreted as the elasticity of current wealth to a uni-
form change in past growth rates.

Assumption on ξ. The case ξiu = 0 corresponds to the case in which the marginal propensity

to consume is equal to the average consumption as a proportion of wealth. The case ξiu = 1

corresponds to the case in which the marginal propensity to consume is equal to zero. Whenever

households consumes proportionally to wealth plus human capital (total wealth), one can show

that ξiu corresponds exactly to the ratio of human capital in total wealth; that is, ξiu ∈ (0, 1) indexes

the relative importance of human capital at time u.

In the rest of the paper I will assume that ξiu = 0 for simplicity. Given the discussion above,

this assumption describes well agents who heavily discount their future labor income relative to

their current financial wealth. In particular, this assumption holds true either if (i) human capi-

tal and future inheritance represents a small share of financial wealth or (ii) households heavily

discount all future labor income and inheritance due to their idiosyncratic risk (which captures

well the behavior of hand-to-mouth households). Hence, this reduced-form assumption captures
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well the behavior of households with a high level of wealth (for which human capital accounts

for a negligible part of their wealth) or the behavior of hand-to-mouth agents (who consume their

wealth and labor income every period).

3.2 Data and Methodology

Proposition 5 allows us to compute the effect of changes in returns on changes in household wealth

as long as we can observe the historical path of their labor income, inheritance and wealth. I

now discuss the data I use to construct a measure of the lifetime path of labor income, wealth,

bequest received by households in top percentiles for the U.S. from a combination of the Survey

of Consumer Finances (SCF) from 1989 to 2016 and Forbes 400 in years.

Since the SCF does not report the previous income and wealth for individuals currently in top

percentiles, I use a “synthetic cohort” approach where I construct the average income and wealth

across top percentiles within each cohort, and I then construct the lifetime path of each agent by

assuming that agents remain in their relative percentiles over their lifetimes (as in the “pseudo-

panel” approach of Feiveson and Sabelhaus, 2019). I set the labor income of households in Forbes

400 to zero. I define the age of a household as the age of the household head minus 25.

Finally, I construct a measure of bequest received across top percentiles by using the total be-

quest distributed over their lifetimes as reported in SCF (which reports the amount and the year of

the three biggest inheritance or in-vivo transfer received over the household’s lifetime). Finally, to

compute the average labor income to wealth ratio of parents, I assume that, with probability half,

they are in the same top percentile (within their cohorts) as their children, while, with probability

half, they are randomly drawn from the population. For households in Forbes, I classify individu-

als manually into three categories: self-made, heirs, and in-between. I assume that the inheritance

to wealth ratio at the time of inheritance is zero for self-made fortunes (60% of observations), 1 for

heirs (24% of observations), and 0.5 for people in between (16% of observations).

To visualize the data construction, Table 2 reports the implied long-run elasticity of wealth

to changes in individual growth rate, computed recursively from (5). If individuals receive no

inheritance and if labor income is an infinitesimal fraction of their wealth, this corresponds literally

to the age of individuals, as in the model with dissipation shocks discussed in Section 2.1. Relative

to this baseline, the presence of labor income tends to decrease the persistence of wealth shocks

while the presence of bequests tends to increase them.

The first column of the table reports the elasticity from (5) that one would obtain without

taking into account inheritance of labor income; i.e., defining the age of the household as the

household head’s age minus 25, as discussed above. Note that the gradient of average age across

the distribution is almost zero. This almost zero gradient implies that without bequests and labor

income, changes in individual returns would not affect top wealth shares. The second column of

the table adjusts for bequests, i.e. reports the elasticity obtained from (5) while still setting Yiu = 0.

This increases the elasticity of wealth at the top since richer households tend to receive larger
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Table 2: Long-Run Semi-Elasticity of Wealth to Returns Implied by the Data

Household age Taking into account Taking into account
(Baseline) bequests bequests & labor income

Top 100% 33 37 26
Top 10% 34 38 28
Top 1% 35 38 31
Top 0.1% 36 40 35
Top 0.01% 37 43 38
Top 400 39 55 46

Notes: The table reports summary statistics on the wealth-weighted distribution of age in top percentiles of the U.S. economy. Data
from the Survey of Consumer Finances and Forbes 400 from 1989 to 2016.

bequests. The third column of the table then also accounts for the relative importance of labor

income by reporting the full formula (5). This tends to decrease the average elasticity of wealth at

the bottom since labor income constitutes a large fraction of their wealth every period. Overall,

I find that the gradient of “age” becomes much steeper once one accounts for inheritances and

labor income.

I now briefly compare my estimates for the long-run elasticity of individual wealth to changes

in individual growth rates to the range of estimates implied by the existing literature discussed in

Section 2.4. In average, my estimates are lower then existing calibrations. One way to interpret

this evidence is that Moll et al. (2022) and Gabaix et al. (2016) effectively overestimate the role

of dynastic wealth in top percentiles while Gomez and Gouin-Bonenfant (2024) underestimate it

relative to the U.S. data.

3.3 Results

I now use this methodology and data to compute the dynamics of top wealth shares under a

number of counterfactual scenarios.

Permanent changes in asset returns. As summarized by Piketty and Zucman (2015), most mod-

els of wealth inequality imply that an increase in the average return of wealth increases wealth

inequality (or, at least, the thickness of its right tail). However, there is still substantial uncertainty

on how large the effect of an increase in the average return on wealth on top wealth inequality

actually is. I now use (5) to compute the response of top wealth shares to a permanent increase in

asset returns.

Figure 3a plots the result for a 1pp uniform increase in the growth rate of wealth. In the first

few years, the effect of an increase in the return on wealth is almost zero. As discussed in Section

2.1, this occurs because all individuals in the economy experience this higher growth rate; hence,

top wealth shares do not react. Still, top wealth shares start increasing after a few years. There is

“fanning-out” of top wealth shares which reflects the fact that agents at the top of the wealth dis-

22



tribution benefit relatively more from higher growth rates, as reported in Table 2. The underlying

reason is that the effect of a given increase in asset returns is much more persistent for agents at the

top of the wealth distribution than for the average agent in the economy. Overall, I find that, after

60 years, a 1pp increase in the return on individual wealth increases the share of wealth owned by

the top 0.01% by 0.1 log points. Note, however, that this increase is relatively small compared to

the overall rise in top wealth inequality since 1980, which amounts to approximately 1 log point

(Saez and Zucman, 2022)

Figure 5a plots the increase in the average return of only one type of assets, public and private

equity. Relative to the previous experience, this increases the return of each agent by 1pp times

the share of wealth invested in equity. Relative to the previous experiment, we observe an im-

mediate increase in top wealth shares, reflecting the fact that individuals at the top of the wealth

distributions disproportionately hold equity. We can see that, relative to the previous experiment,

top wealth share increase faster and with a bigger magnitude. Overall, a 1pp increase in the return

on equity increases the top 0.01% by 0.2 log points, which is twice as much as the effect of a 1pp

increase in the overall return on wealth.
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Figure 3: Effect of a Permanent Increase in Returns on Top Wealth Shares
Notes: The figures report the gradient of age and number of years spent in the high-growth category in three models of inequality

in the literature. GLLM (2016) refers to Gabaix et al. (2016), MRR (2022) to Moll et al. (2022), and GG (2024) to Gomez and Gouin-
Bonenfant (2024).

As pointed out in Piketty (2014), one contributor to wealth inequality, beyond the average

return on assets, is also the fact that richer households tend to own asset classes with higher

average returns. One open question, however, is to assess magnitude of this effect. Put differently,

how much lower would top wealth shares be if the average return was equalized across equity,

housing, and debt? My framework provides a simple way to answer this question. Figure 4 plots

the result of computing a counterfactual where I assume that the average return of every asset

class (debt, equity, and housing) gets equalized starting from some time t = 0. I find that, over the

long-run, the wealth share of the top 0.01% would decrease by 0.4 log points after sixty years (i.e.
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a decrease of approximately 30%). The drop is even more pronounced for households in Forbes

400, who almost hold 100% of their wealth in equity (see Gomez, 2017 for more evidence).
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Figure 4: Effect of Equalizing Returns Across Asset Classes on Top Wealth Shares

One-time shock in asset returns. I now use the methodology to compute the impulse response

of top wealth shares to a one-time increase in asset returns (as opposed to a permanent increase

in returns). One key result is that these shocks tend to have very persistent effect on top wealth

shares.

Figure 5a reports the effect of a one-time 10% increase in equity returns. The short-run impact

at t = 0 is large, which reflects the fact that households in top percentiles are more exposed to

equity returns than the average household in the economy. My estimates are consistent with the

reduced-form exposures from Kuhn et al., 2020 and Gomez, 2017. The key contribution of this

methodology is to evaluate the longer-run effect of these asset returns on top wealth shares. In

particular, one striking fact is how persistent the response is for Forbes 400. This reflects the fact

that a substantial portion of individuals in Forbes 400 inherit their wealth; as a result, the impact

of increased equity returns extend beyond the lifetimes of the original equity holders.

Figure 5b reports the effect of a one-time 10% increase in housing returns. Top wealth shares

drop, which reflects the fact that top households hold less housing than the rest of the distribution

(see, for instance, Kuhn et al., 2020, Greenwald et al., 2022, Martı́nez-Toledano, 2020, . . . ). How-

ever, the effect of an increase in housing returns is much less persistent than the effect of equity

returns. This reflects the fact that wealth shocks tend to be much less persistent at the bottom of

the wealth distribution, as a larger fraction of the wealth for the average household in the econ-

omy comes from capitalized labor income, which dampens the effect of past returns on capital on

current wealth (see Proposition 5).
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Figure 5: Effect of a One-Time Increase in Asset Returns on Top Wealth Shares
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4 Conclusion

The starting point of this paper is the observation that, for a wide range of counterfactuals, the

response of the average wealth in a top percentile is equal, at the first-order, to the average wealth

deviation of individuals in the top percentile. I leverage this simple insight to obtain clean for-

mulas for the impulse response of top wealth shares in a wide range of random-growth models.

I then use these results as a diagnostic tool to analyze counterfactuals implied by existing models

of wealth inequality. I also use them as as an accounting framework to compute the dynamics of

top wealth shares under various counterfactual scenarios.

Overall, this paper provides a flexible and transparent methodology to analyze the effects

of economic shocks on wealth inequality. This methodology could help both reduced-form and

structural approaches to generate credible responses of the wealth distribution to counterfactual

changes in the economic environment.
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Appendix

A Proofs

Proof of Proposition 1. In the first step of the proof, I first relate the deviation of densikty of wealth

to the deviations in individual wealth. For any function f ∈ C1 defined on R that decays quickly

enough with wealth, the cross-sectional average of f (Wit) in the counterfactual economy can be

expressed in two ways:∫
R

f (W) (gt(W) + ∆gt(W)) dW =
∫

R
E[ f (Wit + ∆Wit)|Wit = W]gt(W)dW,

where gt denotes the density of wealth at time t in the economy and d denotes the usual dif-

ferential operator with respect to wealth (not the differential operator with respect to the size of

the pertubation). Subtracting both sides by the cross-sectional average of f (Wit) in the baseline

economy gives:∫
R

f (W)∆gt(W)dW =
∫

R
E[ f (Wit + ∆Wit)− f (Wit)|Wit = W]dP(Wit ≤ W).

Dividing by θ and taking the limit θ → 0 gives∫
R

f (W)dgt(W)dW =
∫

R
f ′(W)E[dWit|Wit = W]gt(W)dW. (22)

Integrating by parts gives∫
R

f ′(W)(−dGt(W))dW =
∫

R
f ′(W)E[dWit|Wit = W]gt(W)dW.

Since this holds for any continuous function f ′, this must hold at every point, which implies

dGt(W) = −E[dWit|Wit = W]gt(W) (23)

where Gt denotes the cumulative distribution function for wealth at time t. Note that this equation

is very similar in spirit to Kolmogorov-Forward equation, except that instead of characterizing the

derivative of the CDF with respect to time t, it characterizes the derivative of the CDF with respect

to the perturbation size θ.

In the second step of the proof, I use this result to obtain the deviation in the average wealth

in the top percentile. Applying the implicit function theorem on the definition of the top quantile

(1) gives:

dQt = − 1
gt(Qt)

∫ ∞

Qt

dgt(W)dW. (24)
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Differentiating the definition of the average wealth in the top percentile (2) gives:

dWt(θ) =
1
p

∫ ∞

Qt

W dgt(W)dW − 1
p

Qtgt(Qt)dQt

=
1
p

∫ ∞

Qt

(W − Qt)dgt(W)dW

= − 1
p

∫ ∞

Qt

dGt(W)dW.

where the last line uses integration by part. Substituting out dGt(W) using (23) gives the result

dWt =
1
p

∫ ∞

Qt

E[dWit|Wit = W]gt(W)dW.

Additionally, combining (24) with (23) gives a similar formula for the infinitesimal deviation

in quantiles:

dQt = E[dWit|Wit = W].

Proof of Proposition 2. Differentiating (22) at the second order in θ gives

∫
R

f (W)d2gt(W)dW =
∫

R

(
f ′(W)E[d2Wit|Wit = W] +

1
2

f ′′(W)E[(dWit)
2|Wit = W]

)
gt(W)dW.

Integrating by parts the right hand side gives

∫
R

f (W)d2gt(W)dW =
∫

R
f (W)

(
−∂W

(
E[d2Wit|Wit = W]gt(W)

)
+

1
2

∂WW

(
E[(dWit)

2 |Wit = W]gt(W)
))

dW.

Since this holds for any continuous function f , this must hold pointwise; hence,

d2gt(W) = −∂W
(
E[d2Wit|Wit = W]gt(W)

)
+ ∂WW

(
E[(dWit)

2 |Wit = W]gt(W)
)

(25)

Now, differentiating the deviation of top wealth shares at the second-order in θ gives

d2Wt =
1
p

∫ ∞

Qt

(W − Qt)d2gt(W)dW − 1
p

dQt

∫ ∞

Qt

dgt(W)dW

=
1
p

∫ ∞

Qt

(W − Qt)d2gt(W)dW − gt(Qt)

p

(
1

gt(Qt)

∫ ∞

Qt

dgt(W)dW
)2

. (26)
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Combining with (23) and (25) gives

d2Wt =
1
p

∫ ∞

Qt

(W − Qt)
(
−∂W

(
E[d2Wit|Wit = W]gt(W)

)
+ ∂WW

(
E[(dWit)

2 |Wit = W]gt(W)
))

dW

− gt(Qt)

p

(
1

gt(Qt)

∫ ∞

Qt

(−∂W (E[dWit|Wit = W]gt(W))) dW
)2

Integrating by parts gives

d2Wt =
1
p

∫ ∞

Qt

E[d2Wit|Wit = W]gt(W)dW +
gt(Qt)

p
E
[
(dWit)

2 |Wit = W
]

− gt(Qt)

p
E [dWit|Wit = W]2

= E[d2Wit|Wit ≥ Qt] +
gt(Qt)

p
V[dWi|Wit = Qt].

I conclude the proof by plugging the expressions dWt and d2Wt obtained above into a second-

order Taylor approximation for ∆Wt:

∆Wt =
dWt

dθ
θ +

1
2

d2Wt

dθ2 θ2 + o(θ2)

= E

[
dWit

dθ
|Wit ≥ Qt

]
θ +

1
2

(
E

[
d2Wit

dθ2 |Wit ≥ Qt

]
+

gt(Qt)

p
V

[
dWi

dθ
|Wit = Qt

])
θ2 + o(θ2)

= E[∆Wit|Wit ≥ Qt] +
1
2

gt(Qt)

p
V[∆Wi|Wit = Qt] + o(θ2).

Proposition 5. Consider a one-time perturbation in return, income and bequest at time s < t. Given

(20), this creates a perturbation in wealth

d log Wis =

(
1 − Yis + Bis − ξisCis

Wis

)
d log Ris +

Yis

Wis
d log Yis +

Bis

Wis
d log Bis,

where I assumed that consumption is chosen after Ris is realized but before labor income and

bequests are received. The effect of this deviation on wealth at time t is given by (assuming returns,

labor income, and bequests do not react to the wealth level):

∂Wit

∂Wis
= Rit

∂Wit−1

∂Wis
− ∂Cit

∂Wis

=

(
Rit −

∂Cit

∂Wit−1

)
∂Wit−1

∂Wis
,
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which implies

∂Wit

∂Wis
=

t

∏
s+1

(
Riu −

∂Ciu

∂Wiu

)
.

Equivalently, in logs

∂ log Wit

∂ log Wis
=

t

∏
s+1

(
Riu −

∂Ciu

∂Wiu

)(
1 − Yiu + Biu − Ciu

Wiu

)

≈
t

∏
s+1

(
1 −

Yiu + Biu − Ciu +
∂Ciu
∂Wiu

Wiu

)

where the approximation error decreases for small period of times and converges to zero in the

continuous-time lime.

B Appendix for Section 1

B.1 Case where Individual Wealth is Non-Differentiable in Perturbation

In the main text, we have focused on the common case in which the deviation in wealth due to

the perturbation is differentiable in the perturbation size θ (Assumption 1). In reality, some per-

turbation may generate non-differentiable or event discontinuous changes in individual wealth.

For instance, a change in wealth tax may change the composition of individuals in a country. A

change in corporate taxes may change the decision of being a worker and an entrepreneur, gener-

ating discontinuous changes in wealth.

Still, one can still characterize the first-order response of the average wealth in the top per-

centile as long as the set of individuals for which θ → Wit(θ) is not differentiable is, itself, in-

finitesimal. Under this assumption, the average wealth in the top percentile is still differentiable

in θ and we have:

dWt = dE
[
(Wit(θ)− Qt)

+
]

.

We can get something closer to Proposition 1 by distinguishing between the set of individuals

with differentiable and non differentiable wealth. Formally, denote ND the set of individuals for

which ∆Wit is not differentiable between 0 and θ. The first-order response in the average wealth

in the top percentile is:

dWt = E [dWit|Wit ≥ Qt]

+

(
lim
θ→0

1
∆θ

E
[
(Wit(θ)− Qt)

+|Wit < Qt
]
− lim

θ→0

1
∆θ

E
[
(Qt − Wit(θ))

+|Wit(θ) ≥ Qt
])

.
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B.2 Second-Order Approximation for Log Deviations

In Section 1, we derived a simple expression (6) for the deviation of the log average wealth in a top

percentile in terms of the wealth-weighted average of individual wealth. I now derive a similar

expression that is valid at the second-order. Dividing Proposition 2 by Wt implies the following

second-order approximation for the average wealth in a top percentile:

∆Wt

Wt
= EWit

[
∆Wit

Wit

∣∣∣Wit ≥ Qt

]
︸ ︷︷ ︸

Intensive margin O(θ)

+
1
2

gt(Qt)Q2
t

pWt
V

[
∆Wi

Wit

∣∣∣Wit = Qt

]
︸ ︷︷ ︸

Extensive margin O(θ2)

+o(θ2). (27)

Note that this expression is very similar to Gomez (2023) for the growth rate of the average wealth

in the top percentile in continuous-time. In particular, note that, when the wealth distribution in

the baseline economy has a Pareto tail, we have gt(Qt)Qt/(pWt) → ζ − 1 where ζ is the tail expo-

nent of the wealth distribution. Hence, holding other things equal, second-order effects are lower

when the baseline wealth distribution is higher. Intuitively, a higher level of inequality reduces

both churning around the percentile threshold as well as the effect of this churning on the average

wealth beyond the top percentile. Quantitatively, ζ ≈ 1.5 for the U.S. wealth distribution, which

implies that while the first-term (the intensive margin) is equal to the average relative deviation in

wealth, the second-term (the extensive margin) is equal to a fourth of the variance of the relative

deviation in wealth. Hence, we can expect this second-order effects to be relatively small.

One can rewrite (27) to obtain a second-order approximation for the deviation in the log aver-

age wealth in a top percentile:21

∆ log Wt = log EWit
[
e∆ log Wit

∣∣∣Wit ≥ Qt

]
︸ ︷︷ ︸

Intensive margin O(θ)

+
1
2

gt(Qt)Q2
t

pWt
V [∆ log Wit]︸ ︷︷ ︸

Extensive margin O(θ2)

+o(θ2). (28)

Note that the “intensive” margin log EWit [e∆ log Wit |Wit ≥ Qt] is typically larger than the change in

the average log wealth EWit [∆ log Wit|Wit ≥ Qt] (the first-order term in (6)) due to Jensen inequal-

ity: since log is a concave function, the logarithm of the average deviation is always higher than

21More precisely, this can be derived from:

∆ log Wt = log
(

1 +
∆Wt

Wt

)
= log

(
1 + EWit

[
∆Wit
Wit

∣∣∣Wit ≥ Qt

]
+

1
2

gt(Qt)Q2
t

pWt
V

[
∆Wi
Wit

]
+ o(θ2)

)

= log
(

1 + EWit

[
∆Wit
Wit

∣∣∣Wit ≥ Qt

])
+

1
2

gt(Qt)Q2
t

pWt
V

[
∆Wit
Wit

]
+ o(θ2)

= log EWit
[
e∆ log Wit

∣∣∣Wit ≥ Qt

]
+

1
2

gt(Qt)
2Qt

pWt
V [∆ log Wit] + o(θ2).
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the average of the log deviation.

B.3 Comparison with Differentiated Kolmogorov-Forward Equation

I now briefly discuss my results relative to an alternative approach, which would study the effect

of perturbations in the economy on the wealth distribution by differentiating the Kolmogorov-

Forward equation (as in, e.g. Auclert et al., 2021). Suppose that, in the baseline economy, the

distribution of wealth evolves according to

Pt+1 = At+1Pt (29)

where Pt denotes the CDF of the wealth distribution and At+1 denotes a linear operator encoding

how the distribution of individual wealth at time t is related to the distribution of wealth at time

t + 1.

Differentiating (30) with respect to a perturbation of wealth dynamics gives:

dPt+1 = At+1 dPt + (dAt+1)Pt (30)

Solving this recurrence relationship backward gives:

dPt =
t

∑
s=−∞

(
t

∏
u=s+1

As

)
dAsPs−1 (31)

The intuition for this equation is as follows: the deviation in the law of motion of wealth at some

time s generates an instantaneous change in the distribution of wealth at time s given by dAsPs−1.

The effect of this deviation at time s on the distribution at time t is then given by the operator(
∏t

u=s+1 As
)
, which depends on the baseline law of motion for individual wealth from s to t.

This equation is very useful to compute first-order deviations in the wealth distribution in

terms of first-order deviations in the evolution of wealth across periods. However, it is not suited

to characterize top wealth shares (which is the object we observe in the data) or to construct coun-

terfactual distributions using reduced-form evidence from the data.

C Appendix for Section 2

C.1 General Model of Wealth Dynamics

We can generalize the results obtained in the main text to much more general statistical processes

for wealth. More precisely, under regularity conditions, the deviation for log wealth admits a
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moving-average (MA) representation; that is,

d log Wit =
t

∑
s=−∞

∂ log Wit

∂ log Wis
dϵis.

where dϵis denotes the direct effect of the perturbation on log wealth at time s. The process

∂ log Wit/∂ log Wis is called the “first-derivative process” for log wealth, and it reflects the extent to

which shocks in wealth persist over time. The assumption for this moving average representation

to hold is that this process decays quickly enough.

Combining this equation with Proposition 1 gives the resulting change of the average wealth

in a top percentile as the cumulative sum of past perturbations in relative wealth times the first-

derivative process for log wealth:

d log Wt = EWit

[
t

∑
s=−∞

∂ log Wit

∂ log Wis
dϵis|Wit ≥ Qt

]
.

Different statistical processes for wealth then lead to different expressions for this first-derivative

process. Figure 2 plots the first-derivative process for the two models discussed above as a func-

tion of s. Both decay over time, reflecting the fact that the persistence of wealth shocks is less than

one. In the first model, this is due to the dissipation shocks, while, in the second model, this is due

to the presence of additive shocks.

Note that, in a model in which portfolio returns increase with wealth (as in the model with

non-homothetic preferences in Gaillard et al., 2023), the first-derivative process for log wealth

may be higher than one for some time, before decaying due to death or some other negative force.
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Figure C1: Elasticity of Present Wealth (time t) to Past Wealth (time s) in Random-Growth Models.
Notes: The figure plots the elasticity of wealth at time t with respect to wealth at time s < t, ∂ log Wit/∂ log Wis, as a func-

tion of s. In the model where wealth follows a geometric random walk with dissipation shocks (9), this elasticity is given by
∂ log Wit/∂ log Wis = 1s≥t−ait . In the model where wealth follows a geometric random walk with additive shocks (15), this elastic-
ity is given by ∂ log Wit/∂ log Wis = ∏t

u=s+1 (1 − Yis/Wis). The area under these curves can be interpreted as the elasticity of current
wealth to a uniform change in past growth rates.
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C.2 Comparing my Analytical Results to Existing Results for Tail Indices

I now briefly compare my approach to the existing literature that focuses on characterizing tail

indices.

Tail index. I now add a certain number of assumption to the model to ensure that the distri-

bution in the baseline economy is stationary with a Pareto tail. Assume that individual wealth

follows the law of motion (9), that the probability of death faced by each individual is constant

over time and equal to δ, and that the distribution of log Git is i.i.d. Then, it is well known that

the distribution of wealth has a Pareto tail with tail index ζ given by the unique positive number

satisfying:

log E
[

Gζ
it

]
= δ.

Similarly, if individual wealth follows the law of motion (15), that the distribution of Git is i.i.d.

with E[log Git] < 0, and that the distribution of Yit is i.i.d with thin tails, then it is well known that

the distribution of wealth has a Pareto tail with tail index ζ given by the unique positive number

satisfying:

log E
[

Gζ
it

]
= 0.

Deviation in tail indices. In both cases, consider a permanent perturbation in the law of motion

of individual wealth. Differentiating the expressions above tells us that, if the perturbated wealth

distribution is also Pareto, then the resulting deviation in the tail index is:

d log ζ = −EGζ
it [d log Git]

EGζ
it [log Git]

.

where EGζ
it denotes the distribution of growth rates “tilted” by Gζ

it.

Physical interpretation of tilted distribution. As discussed in Touchette (2009), the distribution

of growth rates that is exponentially tilted by Gζ
it can be interpreted as the distribution of prior

growth rates conditional on being the top. Indeed, combining the previous equation with (11)

implies

EWit

[
t

∑
s=t−ait+1

d log Gis|Wit ≥ Qt

]
∼ EGζ

it [d log Git]

EGζ
it [log Git]

log Wt as p → 0.

In the particular case of a uniform increase in growth rate, this implies

EWit [ait|Wit ≥ Qt] ∼
log W(p)

EGζ
it [log Git]

as p → 0.
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This expression shows that the lifetime average “speed” of individuals in the right tail is asymp-

totically equal to the average growth rate of wealth in the distribution that is tilted by Gζ
it; that is,

EGζ
it [log Git].

One can easily see that EGζ
it [log Git] can also be seen as the derivative of the CGF function of

log growth rates at ζ; that is,

EGζ
it [log Git] =

∂ log
[

Gζ
it

]
∂ζ

.

Now, it is well known that the CGF can be written as a Taylor expansion of cumulants; that is

log E[Gζ
it] = ζµ +

1
2

ζ2σ2 +
1
6

ζ3 · skewness · σ3 +
1
24

ζ4 · kurtosis · σ4 + . . .

where µ, σ, skewness, kurtosis to the mean, standard deviation, skewness, and kurtosis of log Git.

Hence, the ‘speed’ of individuals reaching the right tail of the wealth distribution can be rewritten

as the derivative of that expression with respect to ζ:

lim
p→0

log Wp

EWit [ait|Wit ≥ Qt]
= ∂ζ log

[
Gζ

it

]
= µ + ζσ2 +

1
2

ζ2 · skewness · σ3 +
1
6

ζ3 · kurtosis · σ4 + . . .

Hence, for a given tail index, a higher mean, variance, skewness and kurtosis lead to a faster

wealth path to top percentiles. Note that, in the case in which log growth rates are serially corre-

lated over time, these cumulants should be understood as the derivatives of the scaled cumulating

generating function.22

Serial correlation. All these results can be easily extended to models with serial correlations be-

tween individual growth rates (or models with type-specific distributions of growth rates), which

is an important pattern in the data. In this type of model, Saporta (2005) and Beare and Toda (2022)

show that the tail index is characterized by

lim
T→∞

1
T

log E

[(
T

∏
t=1

Gζ
it

)]
= δ.

Differentiating this expression gives:

d log ζ = − lim
T→∞

E∏T
t=1 Gζ

it

[
∑T

t=1 d log Git

]
E∏T

t=1 Gζ
it

[
∑T

t=1 log Git

] .

22That is, ζ → limT→∞
1
T log E

[
∏T

t=1 Gζ
it

]
.
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This type of expression is obtained by Gomez and Gouin-Bonenfant (2024). Note that this equation

implies that perturbating uniformly the growth rate of all agents in the economy must generates

a change in the tail index that is as big, in magnitude, as perturbating the growth rate of only one

type of agents. Yet, we discussed in Section 2 how an increase in the growth rate of agents that

end up at the top of the wealth distribution typically generates much larger changes in top wealth

shares relative to a uniform increase in the growth rate of all agents in the economy. This type of

distinction cannot be picked up by tail indices, as they only characterize the asymptotic deviation

in top wealth shares as p → 0. Overall, focusing on changes in tail indices can sometimes be very

unhelpful to characterize the actual movements in top wealth shares.

C.3 Diagnostic Tools for Other Counterfactuals

Relative to Table 1 in the main text, Table C1 examines the effect of a different counterfactual,

which corresponds to an increase in the growth rate of only a subset of agents. I consider an in-

crease in the growth rate of the agent with the higher average growth rate. Note, however, that

the interpretation of this “high-type” varies across models so one cannot really do direct compar-

ison across models — the goal of this table is simply to show that my first-order approximations

performs well for this type of counterfactuals too.

Table C1: Long-Run Semi-Elasticity of Wealth to Growth Rate of High-Type

Non-infinitesimal deviation First-order effect

Top 0.01% Top 100% Difference Top 0.01% Top 100% Difference

Moll et al. (2022) 149 8 141 134 5 129
Gabaix et al. (2016) 37 5 32 36 5 31
Gomez and Gouin-Bonenfant (2024) 15 0 15 15 0 15

Notes: The table reports the effect of a 1pp. increase in the high-type in each model, as well as the first-order effect computed using
the analytical results derived in Section 2.
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