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APPENDIX E: ESTIMATING THE SUFFICIENT STATISTIC IN 1985

So far, we have estimated our sufficient statistic using 2015 as the reference year. Formally,
this sufficient statistic answers the following question: in a counterfactual world in which re-
quired returns on wealth were a bit higher, by how much lower would Pareto inequality be?

In our empirical application, however, we are interested in the effect of a non-infinitesimal
change in the required rate of return (i.e., a 2 pp. decline). In theory, the effect of such a large
change in the interest rate can be obtained by integrating our sufficient statistic over the path
from r0 = 7% to r1 = 5%:

log θ(r1)− log θ(r0) =

∫ r1

r0

∂r log θ|r=r′ dr
′, (1)

where ∂r log θ|r=r′ denotes the derivative of log Pareto inequality with respect to the required
rate of return when it is equal to r′. Along this path, the composition of individuals at the top, as
well as the extent to which they use external financing, would change. As a result, the sufficient
statistic would change. In this sense, using the sufficient statistic using 2015 as a reference year
only gives a first-order approximation for the effect of a change in required returns on Pareto
inequality. Using the trapezoidal rule to approximate the integral, a second-order approximation
is

log θ(r1)− log θ(r0)≈
1

2

(
∂r log θ|r=r0

+ ∂r log θ|r=r1

)
. (2)

To quantify these second-order effects, we now estimate our sufficient statistic using 1985 as
the reference year. Assuming that the only difference between 1985 and 2015 is due to changes
in required returns, the average of two quantities gives a second-order approximation for the
effect of the change in required returns on Pareto inequality. We use the same methodology
as before. We start from 1985 Forbes list and we categorize the top 100 individuals into en-
trepreneurs, rentiers and financiers. Table E.I presents our results. Relative to 2015, we find
much fewer financiers, and, as a result, slightly more entrepreneurs and rentiers. Moreover, en-
trepreneurs are much more likely to own a private firm in 1985, while they were more likely to
own a public firm in 2015. This makes it a bit harder to measure the sufficient statistic as we
typically know much less about these private firms. Still, we now do our best to construct the
sufficient statistic in 1985 using the same methodology as the one discussed as in Appendix
C.1. One difference is that we will replace the aggregate net worth of households (Board of
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Governors of the Federal Reserve System (US), 2023b) by the aggregate net worth of house-
holds and non profits (Board of Governors of the Federal Reserve System (US), 2023a), as only
the latter one is available in 1985.

TABLE E.I

INDIVIDUALS IN THE TOP 100 IN 1985 (FORBES LIST)

Group Count

Entrepreneurs 79
Public corporations 20
Private corporations 59

Rentiers 13
Financiers 8

Notes. “Entrepreneurs” are defined as individuals who are invested in non-financial firms that they (or a family member) founded; “Rentiers”
are defined as individuals who are no longer invested in the firm that they (or a family member) founded; “Financiers” are defined as individuals
who are invested in a financial firm that they (or a family member) founded.

Because S-1 forms were not available electronically for this time period, we directly use
micro-files (via the Columbia Business School library) to compute the number of shares owned
by founders at IPO, Nt0 . We report the results in Table E.II. Overall, we find that top en-
trepreneurs in 1985 were much more reliant on debt financing than equity financing. In partic-
ular, we find that the average equity payout yield in 1985 is −0.6%, which is much higher than
the −2.2% estimated in 2015. Mechanically, this comes from the combination of the fact that
(i) there are much fewer public firms in the sample (and we assign a 0% equity payout yield
to private firms) and (ii) the public firms in our sample tend to be have been less reliant on
external equity financing over their lifetime relative to 2015. One reason could be that required
returns on wealth were higher in 1985, and firms rationally respond by investing less. Another
reason may be that the venture capital industry was much less developed then, which means
that young firms faced larger frictions in issuing equity.

In contrast, we find that the average market leverage is 1.71, which is higher than the 1.43
estimated in 2015. This is consistent with the overall evolution of leverage in the nonfinancial
corporate sector (see Hall, 2001). Finally, we find that their lifetime average growth rates of
wealth is lower, which reflects the fact that wealth inequality was lower in 1985.

TABLE E.II

SUMMARY STATISTICS IN 1985

Obs. Average Percentiles

Min p25 p50 p75 Max

Equity payout yield 79 −0.6% −8.7% 0.0% 0.0% 0.0% 3.3%
Dividend yield 79 0.2% 0.0% 0.0% 0.0% 0.1% 4.6%
Buyback yield 79 −0.8% −9.0% −0.4% 0.0% 0.0% 0.0%

Market leverage 79 1.71 0.86 1.71 1.71 1.71 4.31
Growth rate of wealth 79 0.22 0.06 0.14 0.18 0.25 0.87

Notes. This table reports the lifetime average dividend yield, buyback yield, market leverage, and growth rate for the top 100 U.S. individuals
in 1985. The construction of each variable is detailed in Appendix C.1. Data are from Forbes, Compustat, and SEC S-1 filings.
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We now use these results to produce an estimate of our sufficient statistic for the reference
year 1985. Using a duration of 35 years, we find that the sufficient statistic in 1985 is −4.9,
which is similar to the sufficient statistic of −4.2 estimated using 2015 data. On the one hand,
successful entrepreneurs in 1985 relied less on equity financing. On the other hand, they used
a larger amount of debt financing and they experienced lower growth rates, which magnifies
the effect of a given percentage point change in the growth rate of their wealth on log Pareto
inequality.

Table E.III reports the sufficient statistic for the reference years 1985 and 2015 as well as
the average of these two numbers. We find an average of −4.5, which is similar to our our
first-order approximation using only data from 2015, which gave −4.2.

To improve this second-order approximation, one could also take into account the fact that
the duration of a firms is decreasing in r. In particular, the Gordon growth model implies that the
derivative of duration with respect to the required return is equal to minus duration squared.1

This suggests that an average duration of 35 years in our time sample is consistent with a
duration of 35− 0.5× 352 × 0.01≈ 23 years in 1985 and 35+ 0.5× 352 × 0.01≈ 47 years in
2015. The second row of Table E.III reports the sufficient statistic using these heterogeneous
durations for 1985 and 2015. The average of these two numbers, which can be seen as second-
order approximation of the effect of interest rates on Pareto inequality, gives −4.8, which is a
bit larger than our first-order approximation using only data from 2015, which gave −4.2.

TABLE E.III

ESTIMATES FOR ∂r log θ OBTAINED BY COMBINING DATA FROM 1985 AND 2015

Estimate

1985 2015 Average

Constant duration (35 years in 1985 and in 2015) −4.9 −4.2 −4.5
Increasing duration (23 years in 1985 and 47 years in 2015) −4.3 −5.2 −4.8

APPENDIX F: SOLUTION ALGORITHM FOR MODEL EXPERIMENT

We solve the equilibrium transition dynamics of the model in four steps:
1. Solve for the initial steady-state capital (K0,0,K1,0) associated with the required return
r0;

2. Solve for the evolution of the aggregates (q0,t, q1,t,K0,t,K1,t)t≥0 that is consistent with
an initial condition (K0,0,K1,0) and a sequence of unanticipated and permanent shocks
(drt)t≥0;

3. Back out the sequence of foreign saving shocks (dSF,t)t≥0 that is consistent with market
clearing;

4. We solve for the evolution of the entrepreneur wealth distribution (pt(W ))t≥0.
Note that the algorithm works for both the inelastic capital baseline and the elastic capital
extension. We describe the four steps in the algorithm in the four sections below.

1Consider a firm with a positive cash flow stream that grows on average at rate g. Using a constant required return
r, the duration of the firm is 1/(r − g). As a result, the derivative of the duration with respect to the interest rate is
−1/(r− g)2.



4

F.1. Steady-states

Steady-state solution. To solve for the steady-state (q0, q1,K0,K1) given a constant re-
quired return r0, we simply solve the following system of equations using a root-finding nu-
merical algorithm:

0 =−α(K0 +K1)
α−1(1− π)1−α + (r− g

0
)− τ(ψq1 − 1) + (r+ τ − g

0
)(q0 − 0)− 1

2χ
(q0 − 1)2,

0 =−α(K0 +K1)
α−1(1− π)1−α + (r− g

1
) + (r− g

1
)(q1 − 1)− 1

2χ
(q1 − 1)2,

0 =

(
g
0
+

1

χ
(q0 − 1)− τ − η

)
K0 + ηπK, 0 =

(
g
1
+

1

χ
(q1 − 1)− η

)
K1 + τψK0.

The first two equations correspond to the HJB equations for the firm problem and the last two
equations correspond to the laws of motion for aggregate capital.

F.2. Computing the trajectory of aggregates

To solve for the trajectory of aggregates in the presence of a sequence of MIT shocks, we
repeatedly solve for perfect foresight transition paths. We first describe how to solve for these
paths numerically.

Perfect foresight transition path. Consider an arbitrary period t. Suppose that, at the be-
ginning of period t, the economy has capital (K0,t,K1,t) and a constant required return rt going
forward. To solve for the perfect foresight transition dynamics of (q0,t+s, q1,t+s,K0,t+s,K1,t+s)s≥0,
we use the method proposed by Achdou et al. (2022). The idea is to assume that the economy
will be in steady-state at time t+T , for some large value T > 0. We discretize the time interval
[0, T ] into equi-spaced intervals T= {0,∆t,2∆t, . . . , T}. Let n ∈ T denote a point on the grid.
The algorithm has two steps.

(a) Backward step. First, we solve for the terminal values (q0,t+T , q1,t+T ) as the steady-state
values implied by the required return rt (see Section F.1). Then, given a guess for the path
of capital {K0,n,K1,n}n∈S , we solve for {q0,n, q1,n}∈T backward using the following
recursion

q0,n =
q0,n+1 +

(
MPKn − ι0(g0,n+1) + τ(ψq1,n+1 − q0,n+1)

)
∆t

1 + (rn+1 − g0,n+1)∆t
,

q1,n =
q1,n+1 +

(
MPKn − ι1(g1,n+1)

)
∆t

1 + (rn+1 − g1,n+1)∆t
,

where gs,n = g
s
+ 1

χ
(qs,n+1 − 1) for s= 0,1.

(b) Forward step. Given a guess for {q0,n, q1,n}n∈T and initial values (K0,t,K1,t), solve for
{K0,n,K1,n}n∈T forward using the following recursion

K0,n+1 = (1+ (g0,n+1 − τ − η)∆t)K0,n + ηKπ∆t,

K1,n+1 = (1+ (g1,n+1 − η)∆t)K1,n + τψK0,n∆t.

We iterate over both steps until the path (q0,t+s, q1,t+s,K0,t+s,K1,t+s)s≥0 converges.
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Sequence of permanent required return MIT shocks. Our model experiment consists of
feeding a sequence of permanent MIT shocks to the required return. The idea is that, at ev-
ery t, the required return path gets revised to a constant rt+s = rt for all s ≥ 0. Given a re-
quired return sequence (rt)t≥0, we implement the following algorithm. The goal is to solve
for (q0,t, q1,t,K0,t,K1,t)

T
t=0, or {q0,n, q1,n,K0,n,K1,n}n∈T in grid notation. The algorithm has

two steps.
(a) Initial period (n= 0). We solve the steady-state associated with r0 (see Section F.1) and

collect (K0,K1), which we store as (K0,0,K1,0).
(b) Subsequent periods (0< n ≤ T/∆t). We solve the perfect foresight transition path as-

sociated with a constant required return rn and initial state (K0,n,K1,n) (see paragraph
above titled “Perfect foresight transition path”) and collect the initial values of of (q0, q1)
in the perfect foresight transition path, which we store as (q0,n, q1,n), and next period’s
value for (K0,K1), which we store as (K0,n+1,K1,n+1).

We thus obtain a full transition path {q0,n, q1,n,K0,n,K1,n}n∈T consistent with the sequence
of permanent MIT required return shocks.

F.3. Computing the trajectory of foreign savings

Once we have the evolution of aggregates, we can compute the path for aggregate wealth
(Wt)t≥0, entrepreneur wealth (WE,t)t≥0, and worker financial wealth (WL,t)t≥0 using the for-
mulas in Appendix D.1. First, we compute the target foreigner wealth as a residual WF,t =
Wt − WE,t − WL,t. The goal is to find a sequence of foreigner saving rate (SF,t)t≥0, or
{SF,n}n∈T in grid notation, such that the law of motion for foreign wealth holds at every pe-
riod. The idea is that, if the financial market clears, then the product market clears (by Walras
law). We thus compute {SF,n}n∈T as a residual:

SF,n =

WF,n+1 −WF,n

qM,n+1

qM,n

∆t
+ (η− rt)WF,n ∀n ∈ T.

F.4. Computing the wealth distribution

Finally, we approximate the evolution of the wealth distribution of entrepreneurs (p(W,t))t≥0

over a finite wealth grid W and time grid T. Since the wealth distribution is unbounded (i.e., it
has a Pareto tail), we use the “Pareto extrapolation” algorithm proposed by Gouin-Bonenfant
and Toda (2022). In short, the idea is to approximate the wealth distribution over a finite grid,
while accounting for movements of agents in and out of the grid. The method has been shown
to be very accurate and robust to grid choices.
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